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Abstract. We determine all CR maps from the sphere in C3 into the tube over the future
light cone in C4. This result leads to a complete characterization of proper holomorphic
maps from the three-dimensional unit ball into the classical domain of type IV of four
dimension, confirms a conjecture of Reiter–Son from 2022, and settles the case left open in
Xiao–Yuan [32] and Reiter–Son [26]. Additionally, we prove a boundary characterization
of isometric holomorphic embeddings from a ball into a classical domain of type IV in
arbitrary dimensions that is similar to the main result in Huang–Lu–Tang–Xiao [16]. The
result is then used to treat a special case in the general characterization.

1. Introduction

Let H5 ⊂ C3 be the Heisenberg hypersurface defined by

Im(w)− zzt = 0, z = (z1, z2), (1.1)

and let X be a local model for the tube over the future light cone in C4 given by

Im(w)− zzt +Re(ζ̄zzt)

1− |ζ|2
, |ζ| < 1, (z, ζ, w) = (z1, z2, ζ, w) ∈ C4. (1.2)

We are interested in the characterization of CR maps from H5 into X . This problem is
motivated by research on the characterization of CR maps between real hypersurfaces as
well as proper holomorphic maps between domains in complex spaces. Interesting models for
the such problems are those with “large” groups of CR automorphisms and their symmetry
algebras (the Lie algebras of local CR automorphisms) such as spheres, tubes over the
future light cone, smooth and Shilov boundaries of classical symmetric domains, and many
others. For the proper holomorphic map characterization, we are interested in holomorphic
maps between balls and classical symmetric domains of various types and dimensions. The
related literature is huge and goes back to Henry Poincaré [24] in 1907. For later works,
we mention for examples previous works related to CR maps of Webster [29], Faran [8, 9],
Forstneric [11], D’Angelo [5], Della Sala et al [6], Ebenfelt [7], Huang [15], Kim–Zaitsev
[17], Lamel [19], Reiter [25] and the numerous references therein. For works on proper
holomorphic maps, we refer the readers to, e.g., Alexander [1], Chan–Mok [4], Mok [21, 23],
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Mok–Ng [22], Xiao–Yuan [32], Xiao [31] and the references therein for more information.
Finally, we should also mention Reiter–Son [26] which treats the lower dimensional case,
namely, the case of the sphere in C2 and the tube over the future light cone in C3. That
paper is directly related to the present manuscript.

Let us denote by Aut(H5) and Aut(X ) the CR automorphism groups of the Heisenberg
hypersurface and the local model of the tube over the future light cone, respectively. Two
germs of CR maps (H, p) and (H̃, q) from H5 into X are said to be equivalent if there exist

ψ ∈ Aut(H5) and γ ∈ Aut(X ) such that ψ(p) = q, γ(H(p)) = H̃(q) and

H̃ = γ ◦H ◦ ψ−1. (1.3)

Then, our main result can be stated as follows.

Theorem 1.1. Let U be an open subset of H5 and H : U → X ⊂ C4 a C2-smooth CR map.
Then the following hold:

(a) If H is CR transversal at a point, then it is transversal on U . The germs (H, q), q ∈ U ,
are mutually equivalent and are equivalent to exactly one of the germs at the origin of
the following maps:

(i) ℓ(z1, z2, w) = (z1, z2, 0, w),

(ii) r(z1, z2, w) =

(
z1(1 + iw)

1− w2
,
z2(1− iw)

1− w2
,
2(z21 − z22)

1− w2
,

w

1− w2

)
,

(iii) ι(z1, z2, w) =
2

1 +
√

1− 4w2 − 4i(z21 + z22)
(z1, z2, w, w).

(b) H is nowhere CR transversal and equivalent to a map (z1, z2, w) 7→ (0, 0, ϕ(z1, z2, w), 0)
for a C2-smooth CR function ϕ with ϕ(0) = 0.

Here and throughout this article we write z = (z1, z2) ∈ C2. The linear map ℓ(z, w) and
the irrational map ι(z, w) are holomorphic isometric embeddings with respect to certain
Kähler metrics on one-sided neighborhoods of the source and the target. These maps were
previously introduced in Reiter–Son [26], where their existences follow from the well-known
proper holomorphic maps from the unit ball into the classical domain of type IV, as described
in Xiao–Yuan [32]. Precisely, two maps ℓ(z, w) and ι(z, w), in principle, can be constructed
from the well-known isometric embeddings from the 3-ball into the type IV domain of four
dimensions given in Xiao–Yuan [32] while the rational map r(z, w) appeared in Reiter–Son
[26]. Actually, it was conjectured in that paper that there are only three equivalence classes
of CR maps represented by these maps. Thus, the present paper confirms that conjecture.

In contrast with the case of mapping between spheres where the rigidity (in the sense of
Webster [29]) for the CR codimension one maps only fails when the source is of one CR
dimension [29], in the present situation the rigidity fails when the source CR dimension
is either 1 or 2. This seems to be unexpected in view of the Cartan-Chern-Moser theory.
In fact, in the case of higher source dimension and “low” codimension, the rigidity follows
from Xiao–Yuan [32] and Xiao [31] in which the assumption that the source dimension is at
least 4 is closely related to a Huang’s Lemma-type result as in Huang [15]; see Xiao [31] for
a recent improvement.
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As briefly mentioned above, the lower dimensional case was treated in Reiter–Son [26].
The result was then applied to characterize the proper holomorphic maps from B2 into
DIV

3 ⊂ C3 which extend sufficiently smooth to a boundary point. In higher dimensions,
proper holomorphic maps from a ball into the a classical domain of type IV in “low
codimension” exhibit a rigidity property similar to that in the sphere case, as a consequence
of the work of Xiao–Yuan [32], see also Xiao [31]. Precisely, a proper map from a ball Bn into
the classical domain of type IV DIV

N with 5 ≤ n+ 1 ≤ N ≤ 2n− 2 that extends sufficiently
smooth across a boundary point must be an isometric embedding (with respect to the
normalized Bergman metrics. The case n+ 1 ≤ N ≤ 2n− 3 was proved in Xiao–Yuan [32]
while the case N = 2n−2 was settled in Xiao [31]). Xiao and Yuan also constructed various
examples to show that such a rigidity fails when N ≥ 2n, but left the case N = 2n − 1
as well as the case n ≤ 3 open. Theorem 1.1 above leads to a characterization of proper
holomorphic maps in the case n = 3 that has been left open in these papers, namely, the
case of proper holomorphic maps from a ball in C3 into the classical domain of type IV in
C4. To be more precise, we recall that the ball in C3 is given by

B3 =
{
(z1, z2, w) ∈ C3 | |w|2 + zzt = 1, z = (z1, z2)

}
,

and the classical domain of type IV domain is given by Cartan [3] (cf. Hua [14])

DIV
4 =

{
Z ∈ C4 | 1− 2ZZ

t
+
∣∣ZZt

∣∣2 > 0, |Z| ≤ 1
}
,

where Zt is the transposition of Z. If H and H ′ are two holomorphic maps from B3 into
DIV

4 , we say that H and H̃ are equivalent if there exist automorphisms γ ∈ Aut(B3) and
ψ ∈ Aut(DIV

4 ) such that

H = γ−1 ◦ H̃ ◦ ψ.
Then we can state our characterization of proper holomorphic maps as follows.

Corollary 1.2. Let H : B3 → DIV
4 be a proper holomorphic map which extends smoothly

to some boundary point p ∈ ∂B3. Then H is equivalent to one of the following pairwise
inequivalent maps:

(i)

R0(z, w) =

(
z√
2
,
2w2 + 2w − zzt

4(w + 1)
,
i
(
2w2 + 2w + zzt

)
4(w + 1)

)
, (1.4)

(ii)

I(z, w) =
(
z, w, 1−

√
1− zzt − w2

)/√
2, (1.5)

(iii)

P (z1, z2, w) =

(
z1, z2w,

w2 − z22
2

,
i(w2 + z22)

2

)
, (1.6)

where z = (z1, z2) so that zzt = z21 + z22.
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Remark 1.3. The regularity assumption for the map can be reduced, see Mir [20], Xiao [30],
Kossovskiy–Lamel–Xiao [18], Greilhuber [13]. The maps R0 and I are isometric embeddings
of the ball into the classical domain with respect to the canonical Bergman metrics, as
appeared in Mok [23], Upmeier–Wang–Zhang [28], Xiao–Yuan [32], while P is not isometric.

The map P was found in Reiter–Son [26], which is related to two quadratic polynomial
maps in the lower dimensional case, and was discovered in that paper. When restricting to
the complex hyperplane z1 = 0, we obtain

P (0, z2, w) =

(
0, z2w,

w2 − z22
2

,
i(z22 + w2)

2

)
which leads to the map sending B2 ⊂ B3 into DIV

3 and appears in that paper. Similarly,
when restricting to {z2 = 0}, we obtain

P (z1, 0, w) =

(
z1, 0,

w2

2
,
iw2

2

)
which is almost the same as the previous known map. Finally, restricting to {w = 0}, we
obtain

P (z1, z2, 0) =

(
z1,

−z22
2
,
iz22
2

)
which also leads to a map known in lower dimensions.

Although much of the analysis in this paper parallels that of Reiter–Son [26], there are
significant differences. In the present work, we solve the mapping equation for four unknown
functions, whereas only three were involved in the previous paper. This requires deriving
four holomorphic equations—obtained by differentiating the mapping equations—rather
than three. The resulting system exhibits a structure that differs notably from the lower-
dimensional case.

While one might be tempted to generalize our method to higher dimensions, it is important
to note that for source dimensions n ≥ 4, the classification has already been completed by
Xiao–Yuan [32], where it was shown that only isometries exist in such cases.

The rest of this paper can be summarized as follows. In Section 2, we introduce the
related models and the stability groups. In Section 3, we give a normalization of CR
maps, which is the first step in our proof. We also discuss the notion of geometric rank
of the maps and its relation to the extendability to a local isometric embedding of one-
sided neighborhoods of the source and target, which will shorten our proof of the main
characterization (as compared to Reiter–Son [26]). In Section 4, we give a detailed proof of
the main theorem and, finally, in Section 5 we prove the corollary on the characterization
of proper holomorphic maps and provide further examples and constructions.

2. Preliminaries

2.1. The tube over the future light cone. The tube over the future light cone is the
tube manifold T := C × iR4, where

C =
{
(x1, x2, x3, x4) ∈ R4 | x21 + x22 + x23 = x24, x4 > 0

}
(2.1)
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is the future light cone in R4. The tube over the future light cone in general dimension (which
can be defined completely similar) is an interesting model for Levi-degenerate hypersurfaces
which appeared in various papers, see, for examples, Fels–Kaup [10], Gregorovič–Sykes [12],
and the references therein. As a real hypersurface in C4, this tube has the defining function

ρ(z1, z2, z3, w) := − (Rew)2 + (Re z1)
2 + (Re z2)

2 + (Re z3)
2 , (2.2)

with Rew > 0. The holomorphic map

F (z1, z2, z3, w) =

(
2z

1 + w − z3
,
1− w + z3
1 + w − z3

,
2i(w + w2 − zzt + z3 − z23)

1 + w − z3

)
, (2.3)

has a singular locus {1 + w − z3 = 0}, sends p = (0, 0,−1/2, 1/2) to the origin (0, 0, 0, 0),
and sends a neighborhood of p in T into the hypersurface X . This shows the local CR
equivalence of T and X .

Taking the (local) inverse of F , we obtain the map

G(z, ζ, w) =

(
z

1 + ζ
,
−2 + zzt + 2ζ − iw(1 + ζ)

4(1 + ζ)
,
2 + zzt − 2ζ − iw(1 + ζ)

4(1 + ζ)

)
, (2.4)

which sends the origin to the point p = (0, 0,−1/2, 1/2) and X into T .
Using G, we can easily construct CR maps from the Heisenberg hypersurface H5 into

the tube over the future light cone T . Precisely, composing this map with the linear map
ℓ(z, w) = (z, 0, w) from H5 into X , we obtain the following quadratic map

T1(z, w) = (G ◦ ℓ)(z, w) =
(
z,

1

4
(zzt − iw − 2),

1

4
(zzt − iw + 2)

)
, (2.5)

which sends the origin to p = (0, 0,−1/2, 1/2) and sends H5 into T .
Composing G with the rational map r(z, w), we obtain

T2(z, w) = (G ◦ r)(z, w)

=

(
z(I + iwA)

1− w2 + 2zAzt
,
2w2 − iw − 2 + z(I + 4A)zt

4(1− w2 + 2zAzt)
,

2w2 + iw + 2 + z(I − 4A)zt

4(1− w2 + 2zAzt)

)
,

(2.6)

where, as before, A = diag(1,−1) ∈ Mat(2,R).
Finally, by composing G with the irrational map, we obtain an irrational map from

H5 into X . However, the formula for this map is quite complicated and we refrain from
presenting the details here.

These three maps represent all equivalence classes of CR maps from the Heisenberg
hypersurface into the tube over the future light cone.

2.2. Stability groups. The stability groups (at the origin) Aut0(H5) of the Heisenberg
hypersurface H5 and Aut0(X ) of the local model X are important for us. We use them to
normalize CR maps from H5 into X . Aut0(H5) has a well-known and simple parametrization
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as follows: Let s > 0, u ∈ C, |u| = 1, c = (c1, c2) ∈ C2, r ∈ R, U ∈ U(2),

U =

(
ua −ub
b̄ ā

)
,

with a, b ∈ C satisfying |a|2 + |b|2 = 1 and

δ = 1− 2izc̄t + (r − icc̄t)w,

such that the stability group Aut0(H5) is given by the following automorphisms:

(z, w) 7→ ψs,u,U,c,r(z, w) =
(
s(z + cw)U, s2w

)
/δ.

The group Aut0(X ) can be computed by integrating the vector fields in its symmetry
algebra which vanish at the origin. To make our formulas more concise, we put

δ = δ(z, w) = 1− (r′ + iaāt)w − 2izāt + i aat(wζ + izzt),

for a = (a1, a2) ∈ C2, u′ ∈ C, |u′| = 1, r′ ∈ R, and P ∈ O(2). The stability group consists
of holomorphic maps of the form γ = (γ1, . . . , γ4), where

η(z, w) = s′u′(z + wa− (wζ + izzt)ā)P/δ, η = (γ1, γ2) (2.7)

γ3(z, w) = u′
2 (
ζ − 2zat − iaatw − (r′ − iāat)(wζ + izzt)

)
/δ, (2.8)

γ4(z, w) = s′
2
w/δ, (2.9)

where s′ > 0. This form is completely similar to the case of the tube over the future light
cone in C3. We parametrize elements of Aut0(X ) by

(z, w) 7→ ψ′
s′,u′,P,a,r′(z, w) = γ(z, w).

3. Normalization, geometric rank, and isometric embeddings

In this section, we explain the first step in our proof of the main result, namely, the
normalization process. This is used as starting point in order to introduce the notion of
geometric rank for a map. This is similar to Reiter–Son [26] and is ultimately motivated
by Huang [15]. Based on an idea originated in Lamel–Son [19] and Reiter–Son [26], we
introduce a tensorial invariant for CR transversal maps from a sphere or hyperquadric into
the boundary of a classical domain of type IV and prove a version of Huang–Lu–Tang–Xiao
[16] boundary characterization of isometric embeddings.

3.1. Normalization. Write H = (f, ϕ, g) = (f1, f2, ϕ, g) : C3 → C4 for a holomorphic map

sending the Heisenberg hypersurface Imw − zzt = 0 into the model X defined by

(1− |ζ|2) Imw − zzt − Re
(
ζ̄zzt

)
= 0

and maps (0, 0, 0) to (0, 0, 0, 0). As H(U ∩H5) ⊂ X , the following identity holds(
1− ϕ(z, w̄ + 2izz̄t)ϕ̄(z̄, w̄)

)(
g(z, w̄ + 2izz̄t)− ḡ(z̄, w̄)

)
− f(z, w̄ + 2izz̄t)f̄ t(z̄, w̄)

− 1

2

{
ϕ̄(z̄, w̄)F (z, w̄ + 2izz̄t) + ϕ(z, w̄ + 2izz̄t)F̄ (z̄, w̄)

}
= 0, (3.1)

where F = ff t. We shall call (3.1) the mapping equation.
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If H is a germ at the origin of smooth CR maps from the Heisenberg hypersurface to X ,
then by a “standard” construction, we can associate H to a formal holomorphic map, still
denoted by H : (C3, 0) → (C4, 0) (i.e., the components f1, f2, ϕ, g of H are formal power
series in (z, w) with no constant term) which sends the germ at the origin of the Heisenberg
hypersurface into the model X in formal sense (that is, the mapping equation holds in the
ring of formal power series C[[z, w, z̄, w̄]]), we refer to Baouendi–Ebenfelt–Rothschild [2] for
the details of this construction. Thus, in what follows, we shall view (3.1) as an equation in
C[[z, w, z̄, w̄]].

Using the stability groups of the source and the target, we can bring the map into the
following partial normal form.

Lemma 3.1. Let p ∈ H5 and H = (f, ϕ, g) be a germ at p of a smooth transversal CR map
which sends H5 into X . Then the germ (H, p) is equivalent to the germ at the origin of a

CR map H̃ = (f̃ , ϕ̃, g̃) which is of the following form:

f̃(z, w) = z +
i

2
w(zÃ) + νw2 +O(3),

ϕ̃(z, w) = λw + zB̃zt + wzµt + σw2 +O(3),

g̃(z, w) = w +O(3),

where Ã, B̃ ∈ Mat(2 × 2;R), ν = (ν1, ν2) ∈ C2 and λ, σ ∈ C. The entries of the matrices

we denote by αij and βij respectively and it holds that B̃ is symmetric.
The same holds for a transversal formal map H at the origin sending H5 into X .

Proof. Without loss of generality we can assume that H sends the origin to the origin.
Moreover, we can view H as a formal holomorphic map which satisfies the mapping equation
(3.1).

We write Em := fzm(0) for m = 1, 2. From the mapping equation it follows that

g(z, 0) = 0, gw(0) = ∥E1∥2 = ∥E2∥2 and E1E2
t
= 0. The transversality of H implies

gw(0) > 0 such that E1 and E2 are linearly independent. We apply automorphisms
successively and writeH[k+1] := φ′

k◦H[k]◦φk, whereH[0] := H, φ′
k and φk are automorphisms

of the source and target respectively, parametrized as above and k ∈ N. We denote by
E ∈ Mat(2× 2;C) the matrix whose jth column is Ej . Then we have

H[1]z(0) =
(
uu′ss′EU, u′

2
s(ϕz(0)− 2ia′E)U, 0

)
.

Then we choose s, U and a such that H[1]z(0) = (I, 0), where I is the 2× 2-identity matrix.
Considering H[2] = φ′

2 ◦H[1] ◦ φ2 with s = 1/s′, a′ = 0, U = 1/u′I, we obtain g[1]w(0) = 1
and we have

H[2]w(0) =
(
c+ u′f[1]w(0)/s

′, u′
2
ϕ[1]w(0)/s

′2, 1
)
.

Choosing c accordingly, this allows us to assume f[2]w = 0. This implies, by considering the
mapping equation, that g[2]zw(0) = 0 and all z1 and z2 derivatives of f[2] of order 2 are 0.
Finally, since by the mapping equation it holds that g[2]w2(0) ∈ R, we can choose r in order
to assume g[2]w2(0) = 0. □
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Applying ∂2z1∂z̄1∂z̄2 to the mapping equation and evaluating the result at the origin, we
obtain

−ϕ̄(1,1,0) − 4if
(1,0,1)
2 = 0.

Similarly,

−ϕ̄(1,1,0) − 4if
(0,1,1)
1 = 0.

We deduce from these two equations that

β12 = 2α12 = 2α21.

Applying ∂2z1∂
2
z̄2 to the mapping equation and evaluating the result at the origin, we

obtain

ϕ(2,0,0) + ϕ̄(0,2,0) = 0.

We find that

β11 = −β22
and both are real.

Next, applying ∂2z1∂
2
z̄1 to the mapping equation and evaluating the result at the origin,

we obtain

α11 = β11.

Similarly, we also find that

α22 = β22.

Next, applying ∂z1∂z2∂
2
z̄2 to the mapping equation and evaluating the result at the origin,

we obtain

β12 = 2α21.

In summary, we can rewrite the map as follows.

Proposition 3.2. Let U be an open neighborhood of a point p in C3, p ∈ H5, and
let H : U → C4 be a holomorphic map such that H(U ∩ H5) ⊂ X . Then there exist
automorphisms ϕ and ψ of H5 and X , respectively, which satisfy ψ(p) = 0, γ(H(p)) = 0,
and

γ ◦H ◦ ψ−1 = (f, ϕ, g),

where f, ϕ, and g take the following form
f = z + i

2w(zAα,β) + w2ν +O(3),

ϕ = λw + zAα,βz
t + wzµt + σw2 +O(3),

g = w +O(3),

(3.2)

where

Aα,β =

(
α β
β −α

)
∈ Mat(2× 2;R), ν = (ν1, ν2) ∈ C2, µ = (µ1, µ2) ∈ C2.

Moreover, the rank of Aα,β does not depend on the pair (γ, ψ) satisfying the conditions
above.



MAPS FROM THE SPHERE INTO THE TUBE OVER THE FUTURE LIGHT CONE 9

3.2. Geometric rank and the CR Ahlfors tensor. By Proposition 3.2, the rank of the
matrix A appearing in the partial normal form (3.2) is an invariant of the equivalence class
of the germ (H, p). Similarly to Huang [15] and Reiter–Son [26], we make the following
definition.

Definition 3.1. The rank of the matrix A is called the geometric rank of H at p, and
denoted by rk(H)(p).

The notion of geometric rank is very useful in the study of sphere and hyperquadric
maps, as exhibited in Huang [15] and Huang et al [16]. Moreover, it is related to the rank of
the Hermitian part of the CR Ahlfors tensor of sphere and hyperquadric maps, as shown in
Lamel–Son [19] and Reiter–Son [27]. Motivated by these works, we introduce the following
tensor.

Definition 3.2. Let M and M ′ be real hypersurfaces in Cn+1 and CN+1, defined by ρ and ρ′,
respectively. Suppose that H : U → CN+1 is a holomorphic map such that H(U ∩M) ⊂M ′.
Assume that V ⊂ U is an open subset with V ∩ M ̸= ∅ and Q : V → R is a positive
real-valued function satisfying

ρ′(H(z), H(z)) = Q(z, z̄) ρ(z, z̄), z ∈ V ⊂ U. (3.3)

Then we define a tensor A′(H) associated to H on V ∩M as follows:

A′(H)(Z,W ) = (i∂∂̄ logQ)(Z,W ), Z,W ∈ T (1,0)M. (3.4)

Observe that this tensor depends on the map H as well as the defining functions ρ and ρ′.
The motivation for this definition comes from two sources. The first one is a recent study
of the CR Ahlfors tensor and the second is the relation between the Hermitian part of the
CR Ahlfors tensor and the geometric rank of sphere and hyperquadric maps.

Proposition 3.3 (Lamel–Son [19]). Let M and M ′ be strictly pseudoconvex real hypersur-
faces as in Definition 3.2. Consider the pseudo-Hermitian structures θ = i∂̄ρ and θ′ = i∂̄ρ′,
respectively. Let A(H) be the CR Ahlfors tensor of H with respect to this pair of structures.
Assume that J(ρ) = 1 +O(ρ2) and J(ρ′) = 1 +O(ρ′2). Then

A(H)(Zα, Zβ̄) = A′(H)(Zα, Zβ̄).

The construction of the CR Ahlfors tensor is lengthy. We refer the readers to [19] for the
details as we mainly work with A′(H), which is defined also in the case of Levi-degenerate
hypersurfaces. On the other hand, this proposition suggests that the CR Ahlfors derivative
is interesting only when we can choose “nice” pseudohermitian structures, which often come
from a special defining functions of the hypersurfaces.

Fix a local frame Zα in a neighborhood of p, we obtain a Hermitian n × n-matrix
(A(H)(Zα, Zβ̄)), here n is the CR dimension of the source. It is clear that the rank of the
matrix on the left does not depend on the chosen frame. Moreover, as already observed
by Lamel and Son in the case of sphere maps (see also Reiter–Son [26, 27]), we have the
following lemma whose proof is left to the readers.
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Lemma 3.4. Let U be an open neighborhood of a point p in C3, p ∈ H5, and let H : U → C4

be a holomorphic map such that H(U ∩H5) ⊂ X . Then rk(H)(p) = rkA′(H)(p).

This lemma provides a simple argument of the invariant property of the geometric rank
of H.

Remark 3.5. It follows from Theorem 1.1 that the maps in our classification can have
geometric rank either zero or two; there are no maps of geometric rank one. This is because
the determinant of Aα,β is α2 + β2 ≥ 0, which can only be zero when Aα,β = 0.

3.3. Isometric embeddings. Assume thatH is defined and holomorphic in a neighborbood
U of a point p ∈ M , transversal to M ′ at H(p) and sends M into M ′. Also assume that
the relation (3.3) is valid in U . In this situation, the tensor A′(H) is closely related to the
isometry property with respect to suitable Kähler metrics on one-sided neighborhoods of M
and M ′. For example, let the sphere S2n+1 be defined by ρ(z, z̄) = |z|2− 1 = 0 and let R be
the smooth boundary part of a type IV domain, defined by ρ′(Z,Z) = 1−2|Z|2+ |ZZt|2 = 0.
A holomorphic map H defined in an open neighborhood U of a point p ∈ S2n+1 and sends
S2n+1 into R must satisfy

ρ′ ◦H = Qρ, (3.5)

for some real function Q. If H is transversal to R, then Q is positive along U ∩ S2n+1. If
i∂∂̄ log ρ and i∂∂̄ log ρ′ define Kähler metrics on open sets U ∩ {ρ > 0} and V ∩ {ρ′ > 0} ⊃
H(U) respectively, then the isometry property of H is equivalent to the pluriharmonicity of
the function u = log(Q). In fact, (3.5) implies that

H∗ (i∂∂̄ log ρ′) = i∂∂̄ log ρ+ i∂∂̄ logQ. (3.6)

Thus, H is an isometry if and only if i∂∂̄ logQ = 0, which in turn is equivalent to the
pluriharmonicity of logQ. Therefore, the isometry property of H implies the vanishing
of the tensor A′(H) on U ∩M . This simple observation is particularly interesting when
considering classical domains when the boundary defining function is related to the Bergman
kernels of the domains. More explicitly, the Bergman kernel of the classical symmetric
domain of type IV is

KDIV
m
(Z,Z ′) =

1

V (DIV
m )

(
1− 2ZZ ′ + |ZZ ′|2

)−m
,

therefore, the Kähler form of the Bergman metric on this domain is given by

ωDIV
m

= i∂∂̄ logKDIV
m
(Z,Z) = −m(i∂∂̄ log ρ′(Z,Z))

Likewise, the Kähler form for the Bergman metric on the ball is

ωBn+1 = i∂∂̄ logKBn+1(Z,Z) = −(n+ 2)i∂∂̄ log ρ(z, z̄).

Thus, the restriction of H to U ∩ Bn+1 is an isometric embedding (up to a normalizing
constant), which means that H satisfies the following equation

m

n+ 2
ωBn+1 = H∗ωDIV

m
,
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which holds if and only if H is a local embedding and Q is pluriharmonic on U ∩ Bn+1. By
continuity, A′(H) = 0 on U ∩ S2n+1, i.e., H has vanishing geometric rank on U ∩ S2n+1.
The converse also holds. In fact, we have the following version of Huang–Lu–Tang–Xiao
[16] boundary characterization of isometric embeddings.

Theorem 3.6. Let U be an open neigborhood of a point p ∈ S2n+1 and H a holomorphic
map from U into Cm. Assume that U ∩ Bn+1 is connected, H(U ∩ Bn+1) ⊂ DIV

m , and
H(U ∩ S2n+1) ⊂ R. Then the following are equivalent:

(1) H is transversal at p and A(H) = 0 on an open neigborhood of p in S2n+1.
(2) H is an isometric embedding from U ∩ Bn+1 into DIV

m .

In Theorem 3.7 below, we also have a similar characterization of isometric embeddings
for holomorphic maps sending a piece of a Heisenberg hypersurface into the model X .
The proofs of these two theorems are essentially the same. We thus omit the proof of
Theorem 3.6. We shall use this result in the proof of Theorem 1.1.

The Siegel domain Ω is the domain in C3 defined by ρ > 0, where

ρ = Imw − zzt,

equipped with the Kähler metric

ωΩ = i∂∂̄ log(ρ(z, z̄).

The domain Ω is an unbounded model for the complex hyperbolic space with boundary
H2n+1. Similarly, the open set S ⊂ Cm, m ≥ 2, defined by ρ′ > 0, where

ρ′ = (1− |ζ|2) Imw − ZZ
t − Re(ζZZt),

is a one-sided neighborhood of X . On S, we consider the Kähler metric with the Kähler
form

ωS = i∂∂̄ log(ρ′(Z, ζ, w, Z, ζ̄, w̄)).

We have

det
(
ρjk̄
)
=

1

4
ρ′−m,

which implies that
i∂∂̄ log

(
det
(
ρjk̄
))

= −mωS .

That is, ωS is a Kähler–Einstein metric with scalar curvature R = −m2.
It is immediate to check that the maps ℓ and ι extend to local holomorphic embeddings

from the Siegel domain Ω into S. Indeed, computations yield

ρ′ ◦ ℓ = ρ,

which implies that ℓ is an isometric embedding, while the identity

ρ′ ◦ ι =
∣∣∣∣ 2

1 +
√
1− 4w2 − 4izzt

∣∣∣∣ ρ
implies that ι is also a local isometric embedding. Here, we use the simple fact that the
logarithm of the modulus of a nonvanishing holomorphic function is pluriharmonic.

Thus, the tensor A(ℓ) = A(ι) = 0 on U ∩H2n+1. Similar to the theorem above, we have
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Theorem 3.7. Let U be an open neigborhood of a point p ∈ H2n+1 and H a holomorphic map
from U into Cm. Assume that U ∩Ω is connected, H(U ∩Ω) ⊂ S, and H(U ∩H2n+1) ⊂ X .
Then the following are equivalent:

(1) H is transversal at p and A(H) = 0 on an open neigborhood of p in H2n+1.
(2) H is an isometric embedding from U ∩ Ωn+1 into S.

Proof. (1) ⇒ (2) follows from the discussion prior to the theorem. We leave the details to
the readers.
(2) ⇒ (1): Let X ⊂ Cm+1 be the real hypersurface given by

X := {ρ′(Z, ζ, w) := (1− |ζ|2) Imw − ZZ
t − Re

(
ζZZt

)
= 0, |ζ| < 1},

where Z = (z1, z2, . . . , zm−1) ∈ Cm−1 is a row vector and ζ, w ∈ C. The holomorphic map
Ψ: Cm+1 → Cm+2 given by

Ψ(Z, ζ, w) =

(
Z,

1

2

(
wζ + iZZt + iζ

)
,
1

2

(
wζ + iZZt − iζ

)
, w

)
transversal to X and sends X into the indefinite real hyperquadric H2m+3

1 . In fact, if H2m+3
1

is defined by

ρ̃(Y, Y ) := Im ym+2 −
m∑
j=1

|yj |2 + |ym+1|2, Y = (y1, . . . , ym+2) ⊂ Cm+2,

then it holds that

ρ̃ ◦Ψ = ρ′.

Thus, the composition Ψ ◦H is transversal to H2m+3
1 and sends the H2n+1 into H2m+3

1 .
If A(H) = 0, then Ψ ◦ H has vanishing Hermitian part of the CR Ahlfors tensor (cf.

Reiter–Son [27]). We can apply the result of Huang–Lu–Tang–Xiao [16] to conclude that
Ψ ◦H extends as a local isometry. From this, we can prove that H also extends as a local
isometry. □

Remark 3.8. Theorem 3.7 can be easily generalized to the case of CR maps from a
hyperquadric into the hypersurface

Xl =
{
(1− |ζ|2) Im(w)− ZElZ

t − Re(ζZZt) = 0, |ζ| < 1
}
,

where El = diag(1, . . . , 1, . . . ,−1, . . . ,−1), with eigenvalue −1 of multiplicity l . Similarly,
Theorem 3.6 can also be generalized to the case of CR maps from the boundary of a
generalized ball into a generalized domain of type IV, defined by

DIV
m,l =

{
1− 2ZElZ

t
+ |ZZt|2 > 0, |ZZt| < 1

}
.

Details are left to the readers.
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4. Proof of Theorem 1.1

In this section, we prove our main theorem. The idea is similar to the proofs in Reiter–Son
[26] and Reiter [25], however, since we have more components of the map as well as more
variables, the required computations are much more challenging.

The proof consists of several steps involving the determination of the map under consid-
eration along the first and second Segre variates of the Heisenberg hypersurface. Based on a
partial normal form of the map, the first step is to determine the map along the first Segre
set Σ = {(z, w) ∈ C3 | w = 0}. By a “reflection principle” we obtain three holomorphic
equations for the components of the map. In the second step, we determine the derivative
Hw along the first Segre set, giving another holomorphic equation, which in turn completes
a system of four holomorphic equations for four components of the map. In the final step,
we solve the system and show that the solution is equivalent to one of the maps in the given
list. Below we shall present the details.

Let U ⊂ H5 be an open subset of the Heisenberg hypersurface and H : U → X ⊂ C4 a
C2-smooth. By the regularity result mention in Remark 1.3, H is smooth. As both H5

and X are homogeneous, we can assume that 0 ∈ U and H sends the origin into the origin:
H(0) = 0. By the normalization, H is equivalent to a (smooth or formal) map of the form
(3.2). We therefore assume that H is a formal map and already of this form.

Next, we determine H along the Segre set Σ of the Heisenberg hypersurface at the origin.
Here,

Σ = {(z, 0) | z ∈ C2} ⊂ C3.

Lemma 4.1. On the first Segre set Σ, it holds that

f =
2z

1 +
√
1− 4iλ̄zzt

, g = 0. (4.1)

Proof. Setting z̄ = (0, 0) and w̄ = 0 in (3.1) and using the fact H sends the origin into the
origin, we find that

ḡ(z̄, 0) = 0.

Taking complex conjugation, we have g(z, 0) = 0, as desired.
Next, we introduce the following differential operators

L1 =
∂

∂z̄1
− 2iz1

∂

∂w̄
, L2 =

∂

∂z̄2
− 2iz2

∂

∂w̄
. (4.2)

Applying L1 to the mapping equation (3.1) and evaluating along (z̄, w̄) = (0, 0, 0), we obtain

z1 − f1(z, 0) + iλ̄z1F (z, 0) = 0, (4.3)

where, as above, F = ff t = f21 + f22 . Similarly, we have

z2 − f2(z, 0) + iλ̄z2F (z, 0) = 0. (4.4)

From (4.3) and (4.4), we find that

z1f2(z, 0) = z2f1(z, 0),
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which, in turns, gives
z21F (z, 0) = zztf21 (z, 0)

From this equation and (4.3), we obtain a quadratic equation in f1(z, 0), namely,

z21 − z1f1(z, 0) + iλ̄zztf21 (z, 0) = 0. (4.5)

Solving (4.5) for holomorphic solution, we find that

f1(z, 0) =
2z1

1 +
√
1− 4iλ̄zzt

,

where
√

1− 4iλ̄zzt is the branch of the root taking value 1 at z = (0, 0). The formula for
f2(z, 0) follows immediately. □

Lemma 4.2. On the first Segre set Σ, it holds that

gw = 1 + iλ̄ff t = 1 +
4iλ̄zzt

1 +
√

1− 4iλ̄zzt
.

Proof. Differentiating the mapping equation with respect to w̄ and evaluating along (z̄, w̄) =
(0, 0, 0), we obtain

gw = 1 + iλ̄ff t + λ̄gϕ.

From this and the previous lemma, we complete the proof. □

We divide into two cases.

4.1. Case 1: λ = 0 In this case, we shall prove that H is equivalent to one of three rational
maps.

From Lemmas 4.1 and 4.2, we have

f(z, 0) = z, g(z, 0) = 0, gw(z, 0) = 1.

Lemma 4.3. If λ = 0, then
σ = 0, ν = µ = (0, 0). (4.6)

Proof. Applying L1 and L2 to the mapping equation (3.1) consecutively, then setting
z̄1 = z̄2 = w̄ = 0, we find that

α(z2f1 − z1f2) + 8z1z2 ν̄f
t + (i(µ̄2z1 + µ̄1z2) + 4σ̄z1z2)F = 0

holds along w = 0. Using Lemmas (4.1) and (4.2), we obtain

4σ̄(z31z2 + z1z
3
2) + iµ̄2z

3
1 + iµ̄1z

3
2 + (8ν̄1 + iµ̄1)z

2
1z2 + (8ν̄2 + iµ̄2)z1z

2
2 = 0.

Equating the coefficients of the monomials on the left-hand side to zero, we can easily
obtain (4.6). □

Next, we determine ϕ along Σ.

Lemma 4.4. If λ = 0, then

H(z, 0) = (z, zAα,βz
t, 0), where Aα,β =

(
α β
β −α

)
. (4.7)
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Proof. It remains to prove that

ϕ(z, 0) = α(z21 − z22) + 2βz1z2 = zAα,βz
t.

To this end, we apply L2
1 to the mapping equation and set (z̄, w̄) = (0, 0, 0). Then, solving

the resulting equation for ϕ(z, 0) to get the desired formula. □

From Lemma 4.7, we obtain several holomorphic equations for components of H.

Lemma 4.5. If λ = 0, then the following holds in a neighborhood of the origin of C3.

αw2(gϕ+ iff t) + 4wz2f2 − iw2ϕ+ 4z22g = 0, (4.8)

αw2(gϕ+ iff t)− 4wz1f1 + iw2ϕ+ 4z21g = 0, (4.9)

w(αz1 + βz2)(gϕ+ iff t)− 2z2(z2f1 − z1f2)− iwz1ϕ = 0, (4.10)

w(βz1 − αz2)(gϕ+ iff t) + 2z1(z2f1 − z1f2)− iwz2ϕ = 0, (4.11)

(zAα,βz
t)(gϕ+ iff t)− izztϕ = 0. (4.12)

Notice that the equations above are holomorphic, as all functions appearing on the left
hand sides contain no complex conjugate variables. In the smooth or formal case, these
equations hold as equalities in the ring of formal power series C[[z, w]].

Proof. Put Ψ = gϕ+ iff t. Setting w̄ = 0 in the mapping equation (3.1) yields

i zAα,βztΨ(z, 2izz̄t)− zztϕ(z, 2izzt)− 2z̄f t = 0. (4.13)

Substituting z̄1 = −(iw + 2z2z̄2)/(2z1) into (4.13) and clearing the denominator, we obtain
an identity of the form

G(H(z, w), z, w, z̄2) ≡ 0, (4.14)

which holds outside the varieties z1 = 0. Here, G(U, z, w, t) is polynomial in its arguments
U, z, w, t. The left-and side is viewed as a holomorphic function or formal power series of
z1, z2, w, z̄2. Setting z̄2 = 0 in (4.14), we obtain the first equality (4.8). Next, differentiating
(4.14) with respect to z̄2 and setting z̄2 = 0, we obtain the third identity (4.10). Other
identities can be obtain in the same manner and by exchanging the role of z1 and z2. We
leave the details to the readers. □

Equations (4.8)–(4.12) are not independent; the last two equations can be obtained from
the first three.

Solving these equations simutanously, we obtain

Lemma 4.6. Put Ψ = gϕ+ iff t. Then

f =
g

w
z +

(
wΨ

2zzt

)
zAα,β, ϕ = −

izAα,βz
t

zzt
Ψ. (4.15)

Proof. We can rewrite the equations in Lemma 4.5 as a system of linear equations in 5
variables Ψ, f1, f2, ϕ, g. It turns out that the rank of the coefficient matrix over the quotient
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field of C[[z, w]] is 3. Three equations (4.8), (4.9), and (4.12) form the following system

 0 4wz2 −iw2 −4z22 αw2

−4wz1 0 iw2 4z21 αw2

0 0 −izzt 0 zAα,βz
t



f1
f2
ϕ
g
Ψ

 =


0
0
0
0
0

 . (4.16)

The reduced row-echelon form of the coefficient matrix can be computed easily, namely, 1 0 0 −z1/w −w(αz1 + βz2)/(2zz
t)

0 1 0 −z2/w w(αz2 − βz1)/(2zz
t)

0 0 1 0 izAα,βz
t/(zzt).

 (4.17)

From this, we can easily solve the system to obtain (4.15). □

To determine ϕ and g, we need another holomorphic equation. We prove the following
lemma.

Lemma 4.7. If λ = 0, then

Hw(z, 0) =

(
i

2
zAα,β, 0, 1

)
. (4.18)

Proof. Consider the differential operator T = ∂/∂w̄. Applying L1 and T to the mapping
equation consecutively and evaluating along (z̄, w̄) = (0, 0, 0), we obtain

f1w(z, 0) =
i

2
(αz1 + βz2) .

Similarly, with L1 is replaced by L2, we obtain

f2w(z, 0) =
i

2
(βz1 − αz2) .

Differentiating (4.12) with respect to w, setting w = 0, and substituting, we obtain

−izztϕw(z, 0) = 0.

Finally, that gw(z, 0) = 1 follows from Lemma 4.2. The proof is complete. □

Lemma 4.8. If λ = 0, then

αw(gϕ+ iff t)− z1(2 + iαw)f1 − iβz1wf2 + iwϕ+ 2z21 = 0. (4.19)

Proof. Substituting z̄1 = −iw/(2z1) and z̄2 = 0 into the following equation,

L1(ρ(z, w̄ + 2izz̄t), H(z, w)) = 0,

we obtain the desired formula. Details are left to the readers. □

We continue the proof of the main result. Substituting (4.15) into (4.19), clearing the
denominator 2wzzt, we obtain an equation of g and Ψ of the form

2iz1(2iz1−w(αz1+βz2))g+ z1w2(2αz1+2βz2− iwz1(α2+β2))Ψ+4wz21(zz
t) = 0. (4.20)
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Substituting (4.15) into the equation Ψ − (gϕ + iff t) = 0 and clearing the common
denominator −4iw2zzt, we obtain another equation of g and ϕ. Namely, we obtain

4(zzt)2g2 + w4(α2 + β2)Ψ2 + 4iw2(zzt)Ψ = 0. (4.21)

From (4.20) and (4.21), we can uniquely solve for (g,Ψ), which are holomorphic at the
origin. The result is

g(z, w) =
4w

4− (α2 + β2)w2
, Ψ(z, w) =

4izzt

4− (α2 + β2)w2
. (4.22)

Plugging these into (4.15), we obtain

ϕ(z, w) =
4zAα,βz

t

4− (α2 + β2)w2
, f(z, w) =

2(2z + iwzAα,β)

4− (α2 + β2)w2
, (4.23)

where

Aα,β =

(
α β
β −α

)
.

From this point on, we divide into two subcases:

Subcase 1: (α, β) = (0, 0). It is easy to see that the map takes the form (z, 0, w), i.e., H is
the linear map.

Subcase 2: (α, β) ̸= (0, 0). In this case, r :=
√
α2 + β2 > 0. By composing with two

suitable automorphisms of the source and target we rescale the matrix A to see that H is
equivalent to a map of the form

r(z, w) =

(
z(I + iwA)

1− w2
,

2zAzt

1− w2
,

w

1− w2

)
, (4.24)

where I is the 2× 2 identity matrix and

A = A1,0 =

(
1 0
0 −1

)
.

Explicitly, let s ∈ [0, 2π) be given by

α = r cos(s), β = r sin(s),

and consider the following automorphisms γ ∈ Aut0(X ) and ψ ∈ Aut0(H5) given by

γ(z, ζ, w) =
(√
rzB, ζ, rw

)
,

ψ(z, w) =
(√
rzB, rw

)
,

where B is the following 2× 2 orthogonal matrix

B =

(
cos(s/2) − sin(s/2)
sin(s/2) cos(s/2)

)
.

Then, by direct calculation, one can check that

r = γ ◦H ◦ ψ−1,
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which completes the proof of Case 1.

4.2. Case 2: λ ̸= 0. In this case, we will show that the map is irrational and an isometric
embedding of the “canonical” Kähler–Einstein metrics from the Siegel domain into a
one-sided neighborhood of X .

Lemma 4.9. If λ ̸= 0, then α = β = 0.

Proof. Applying L2
1 the mapping equation (3.1) and evaluating along z̄1 = z̄2 = w̄ = 0, we

obtain

2z1(α+ 4ν̄1z1)f1 + 2z2(β + 4ν̄2z1)f2 + (4σ̄z21 + 2iµ̄1z1 − α)ff t − (1− 4iλ̄z21)ϕ = 0, (4.25)

which holds along Σ. Similarly, applying L2 and L1 consecutively to the mapping equation
(3.1) and evaluating along z̄1 = z̄2 = w̄ = 0, we obtain

(βz1 + αz2 + 8ν̄1z1z2)f1 + (−αz1 + βz2 + 8z1z2ν̄2)f2

+ (−β + iµ̄1z2 + iµ̄2z1 + 4σ̄z1z2)ff
t + 4iλ̄z1z2ϕ = 0 (4.26)

along Σ. Solving for ϕ(z, 0) from (4.25) and substituting the result into (4.26) and further
substituting (4.1), we obtain an equation of the form

M(z)
√
1− 4iλ̄zzt +N(z) = 0, (4.27)

where M(z) and N(z) are explicit polynomials in z1 and z2. Since λ ̸= 0, equation (4.27)
implies thatM(z) = N(z) = 0. The explicit formula ofM(z), which is a quartic polynomial,
is as follows:

M(z) = 4λ̄βz41 − 8λ̄αz31z2 + · · ·
where the dots represent monomials of different types, than the ones displayed. Equating
the coefficients of z41 and z31z2 to zero, we conclude that α = β = 0. □

We now complete the proof of Case 2. At an arbitrary point in p ∈ U , a partial normal
form of H at p must have coefficient λ ̸= 0, as otherwise, H were equivalent to a map
appearing in Case 1. Therefore, H has vanishing geometric rank at an arbitrary point
p ∈ U and hence on an open set. Thus H extends to a local isometry by Theorem 3.7.
By Xiao–Yuan [32], it must be equivalent to ι. This completes Case 2. The case, when
the map is nowhere transversal is treated in the next section, and it finishes the proof of
Theorem 1.1.

4.3. Nowhere transversal maps. If the map H is nowhere transversal in H5 then we
have the following:

Lemma 4.10. Any smooth CR map H, which sends H5 into X and is nowhere transversal
in H5, is equivalent to a map of the form (z, w) 7→ (0, 0, ϕ(z, w), 0) for a smooth CR function
ϕ fixing the origin.
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Proof. The transitivity of the automorphisms of the source and target allows us to assume
H(0) = 0. Then the map has to satisfy the following equation:

(g(z, w)− ḡ(z̄, w̄))(1− |ϕ(z, w)|2)− 2i(f(z, w)f̄ t(z̄, w̄)− Re(f(z, w)f t(z, w)ϕ̄(z̄, w̄))) = 0,

for all z, w, z̄, w̄. Setting z̄ = w̄ = 0 shows g = 0. We consider the weighted homogeneous

expansion fj =
∑

k≥0 f
j
k , where j = 1, 2, and ϕ =

∑
i≥0 ϕi, where f

j
m and ϕm are weighted

homogeneous polynomials of order m with respect to the weight 1 for z1, z2 and 2 for w.
Then we obtain when we collect terms of order m:

m∑
k=0

f1k f̄
1
m−k +

m∑
j=0

f2j f̄
2
m−j +Re

(
m∑
i=0

i∑
l=0

f1m−if
1
i−lϕ̄l +

m∑
r=0

r∑
s=0

f2m−rf
2
r−sϕ̄s

)
= 0.

We show inductively that fn = 0. f0 = 0 follows from the fact that H(0) = 0. Assuming
f0 = . . . = fn = 0 and consider m = 2(n+ 1) in the above equation. Then the equation
becomes f1n+1f̄

1
n+1 + f2n+1f̄

2
n+1 = 0, which shows the claim. □

5. Construction of maps, proof of Corollary 1.2, and an example

From the well-known fact that the smooth part of the boundary of a type IV domain is
locally CR equivalent to the tube over the future light cone and Theorem 1.1, we can easily
deduce Corollary 1.2 about a characterization of proper holomorphic maps from the unit
ball in C3 into the type IV domain in C4.

Before providing the proof of the corollary, we explain how to construct the maps stated
in Corollary 1.2 from the maps in Theorem 1.1. Of course, the two isometric embeddings
were known earlier from the work of Xiao–Yuan [32]. The third map was given in Reiter–Son
[26].

First, the rational map Φ given by

Φ(z, ζ, w) =

(
2iz

2i+ w
,
2i− w − 2iζ − (wζ + izzt)

2(2i+ w)
,
i
(
2i− w + 2iζ + (wζ + izzt)

)
2(2i+ w)

)
(5.1)

sends a neighborhood V of the origin biholomorphically onto some neighborhood U of p
with Φ(0, 0, 0, 0) = p and Φ(X ) ⊂ ∂DIV

4 (cf. [26]). Composing it with the linear map, we
obtain

Φ ◦ ℓ(z, w) =

(
2iz

2i+ w
,
2i− w − izzt

2(2i+ w)
,
i
(
2i− w + izzt

)
2(2i+ w)

)
. (5.2)

Next, consider the following modified Cayley transform:

C1(z, w) =

( √
2z

1 + w
,
2i(1− w)

1 + w

)
,

one can check that

R0 = Φ ◦ ℓ ◦ C1

is the well-known rational isometry. This map has a singular point at (0, 0,−1).
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For the other rational map, we take

A−1/2,0 =

(
−1/2 0
0 1/2

)
and consider the map HA−1/2,0

. The (modified) Cayley transform

C2(z1, z2, w) =

(
2z1

1− w
,

−2z2
1− w

,
4i(1 + w)

1− w

)
sends the 3-ball into the Siegel domain and sends the sphere into the Heisenberg hypersurface.
By direct calculations

Φ ◦HA−1/2,0
◦ C2(z, w) =

(
z1, z2w,

w2 − z22
2

,
i(w2 + z22)

2

)
. (5.3)

The formulas of the automorphisms and maps to obtain the irrational map are quite
complicated. Details are left to the readers.

Now we give the proof of the characterization of the proper holomorphic maps from B3

into DIV
4 that extend smoothly to a boundary point. The argument here is very similar to

Reiter–Son [26].

Proof of Corollary 1.2. Assume that H : B3 → DIV
4 is a proper holomorphic map that

extends smoothly to a boundary point p ∈ S5. We can assume that p = (0, 0, 1) and

H(p) =
(
0, 0, 12 ,

i
2

)
. Then H̃ := Φ−1 ◦H ◦ C−1 defines a germ at the origin of CR maps

sending H5 into X . Therefore, either it is equivalent to one of the transversal maps ℓ, r, and
ι (by Theorem 1.1), or it is nowhere transversal and of the form (z, w) 7→ (0, 0, ϕ(z, w), 0)
(by Corollary 4.10). The last case cannot happen, as otherwise H is not proper. Hence,

H̃ must belong to one of three equivalence classes of the germs of Φ−1 ◦ F ◦ C−1 with
F ∈ {R0, P, I}. In fact, these three germs of CR maps Φ−1 ◦ F ◦ C−1, F ∈ {R0, P, I} are
pairwise inequivalent as can be easily checked using the Ahlfors invariant and the rationality.
Thus, there are local CR automorphisms ψ ∈ Aut(X , 0) and γ ∈ Aut(H5, 0) such that

ψ◦H̃ ◦γ−1 = Φ−1◦F ◦C−1 near the origin for some F ∈ {R0, P, I}. Thus, if ψ̃ := Φ◦ψ◦Φ−1

and γ̃ := C−1 ◦ γ ◦ C, then, as germs at p, we have ψ̃ ◦H ◦ γ̃−1 = F ∈ {R0, P, I}. But ψ̃
is a global automorphism of DIV

4 by a Alexander-type theorem of Mok–Ng [22] (see also
Reiter–Son [26, Theorem 2.3] for a simpler proof in the special case of DIV

3 ) and γ̃ is a
global automorphism of the unit ball. This completes the proof of Corollary 1.2. □

We end this paper by the following example of a family of maps.

Example 5.1. For s ∈ R, the family of proper holomorphic maps

PB(z, w) =

(
z + (w − 1)zB,

1

2
(w2 − zBzt),

1

2i
(w2 + zBzt)

)
, (5.4)

where B = vtv ∈ Mat(2× 2;R) and v = (cos(s), sin(s)). For each s this map sends B3 into
DIV

4 properly. By Corollary 1.2, it is equivalent to P (z, w).
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