ON THE CHERN-MOSER-WEYL TENSOR OF REAL HYPERSURFACES

MICHAEL REITER AND DUONG NGOC SON

ABSTRACT. We derive an explicit formula for the well-known Chern-Moser—Weyl tensor for
nondegenerate real hypersurfaces in complex space in terms of their defining functions. The for-
mula is considerably simplified when applying to “pluriharmonic perturbations” of the sphere
or to a Fefferman approximate solution to the complex Monge-Ampeére equation. As an ap-
plication, we show that the CR invariant one-form X, constructed recently by Case and
Gover is nontrivial on each real ellipsoid of revolution in C3, unless it is equivalent to the
sphere. This resolves affirmatively a question posed by these two authors in 2017 regarding the
(non-) local CR invariance of the Z'-pseudohermitian invariant in dimension five and provides
a counterexample to a recent conjecture by Hirachi.

1. INTRODUCTION

The Chern-Moser-Weyl tensor Sz,

holomorphic invariants of nondegenerate real hypersurfaces in C**', n > 2. When n = 1, it

introduced in [4], is one of the most important bi-

vanishes identically by default and its role is played by the Cartan invariant. A fundamental
property of it is that opye = 0 characterizes CR spherical hypersurfaces. Theses are hypersur-
faces which are CR equivalent to the sphere or a real hyperquadric, see [4]. Moreover, aByG
plays an important role in recent studies of higher CR invariants and “secondary” invariants,
similar to the role of the Weyl tensor in conformal geometry; see, e.g., [3, 13, 14} 2] and the
references therein. There exist explicit formulas for S5, 5 in the literature, see 14, 277, 28, [11].
However, the formulas given in the aforementioned papers are difficult to compute in certain
examples. For instance, although S, 3.5 is given by appropriate coefficients in a normal form
[4], the normalization process is often too complicated; even for a hypersurface which is already
given in normal form at a centered point, it is not practical to renormalize the hypersurface
at near by points to compute the tensor. Due to this complexity, it is hard to apply them in
certain situations, e.g. when locating the CR umbilics or studying the CR invariance of the
T’'-curvature; see, e.g., [28, 27, [2].

This motivates the first goal of this paper. We provide an explicit formula for the Chern—
Moser—Weyl tensor of nondegenerate real hypersurfaces in terms of arbitrary defining functions,
which has a rather concise representation and allows for direct applications, as we demonstrate in
this paper. In order to describe the formula, we need to introduce some notation. Let M c C*t!
be a real hypersurface and g a (smooth) defining function for M, i.e., M = {¢o =0} and dp # 0
on M. Let (z,w) = (21, ..., 2n, 2znt1) for coordinates on C"*!, 6 = 1*(idp) the pseudohermitian
structure (in the sense of [26]) induced by o, for ¢ : M — C"*! is the inclusion, and V the

associated Tanaka—-Webster connection introduced in [25] and [26] (see [5] for more details).

Date: April 2, 2020.
2000 Mathematics Subject Classification. 32V20, 32V30.
The first author was supported by the Austrian Science Fund FWF-project P28873-N35. The second author

was supported by the Austrian Science Fund FWF-project M 2472-N35.
1



2 MICHAEL REITER AND DUONG NGOC SON

Since dp # 0 on M, for local considerations we may assume, without loss of generality, that
w = 00/0w # 0. Under this condition, the vector fields of (1,0)-type Z, := 0o — (0a/0w) Ow
a=1,2,...,n, form a basis of T"YM. In this paper, tensorial quantities will be expressed in
this frame.
A dual coframe {0*: « =1,2,...,n} to {Z,} is given by

0% = dz* — 1“0, (1.1)
where the £¥’s are the components of the (1,0)-complex vector field ¢ defined by
¢ 19000 = irdo, 0o(£) = 1. (1.2)
This coframe is admissible in the sense that df = ih,50% A 65 for some hermitian matrix h.z
which is called the Levi matrix.

Various expressions in this paper can be written concisely by using the following second order
differential operator (introduced earlier in [19]):

D2 1= a0 = 20,0 - ?aa+%%aa. (13)

Notice that h,5 in the frame Z, is given by
hog = —id0(Za, Z5) = 077(Za, Z5) = Dig(g), (1.4)

where o7 is the hermitian Hessian of p. Similarly, we define

D2, = 0005 — 220,05 — 20,0, + 23202, (1.5)
Ow Ow %

w

which satisfies
Dig(‘ﬂ) = 9z72(Za, Z3), (1.6)

where @7z is the Hessian of ¢ in holomorphic coordinates. Since M is nondegenerate, h, 3

is invertible with inverse h?® and we shall use these matrices to lower and raise the Greek

indices, which run over 1,...,n. Throughout this article the summation convention is used and

performed with respect to repeated indices.

In our first result, the defining function ¢ has nondegenerate complex Hessian, i.e., g;; is
invertible. In this case, the inverse of the Levi matrix is given by (see, e.g., [18 (2.7)]):

S

|00l

(1.7)

Here |0o|? := |00|? is the squared norm of do in the Kahler metric w := i00p and oF = QkiQZ‘.
We also use p,; and its inverse p! to lower and raise the lowercase Latin indices, which run
over 1,...,n+ 1.
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Theorem 1.1. Suppose that M is defined by ¢ = 0 with ;5 = djx and 0 := i0p. Put hag =
Dgﬁ(g), hgs = thg, and hg = hgah‘“_’. Then the pseudohermitian curvature and the Chern—
Moser—Weyl tensor are given by

RaB'ya' :|8Q|72 (hthWE + hoa?h»yﬁ - howhﬁa) ) (18)
o harhgy | PuahGhio  hunt5has + huahbhos + b hos
afye — |00]2 (n+ 2)|00[2

B by h7H (haéhw + haahﬁ/ﬁ-)
(n+1)(n+2)[00>2
in the local frame Zy = 0o — (0a/0w) Ow-

(1.9)

Note that in, e.g., [6], a formula for the Chern-Moser—Weyl tensor similar to was
established in terms of coefficients of the second fundamental form of a CR immersion into the
sphere which were not explicit.

The above statements follow from a more general result, given in Theorem In the general
case, the formula is inevitably complicated. However, in the case of plurihamonic perturbations
of the sphere, i.e., when o = || Z]|?> + Re(¢/(Z)) for some holomorphic function 1, only
involves 2nd order derivatives of the defining function although the Chern—-Moser—Weyl tensor
contains 4th order derivatives in general.

Another important situation where our formulas are simplified is that of Fefferman approx-
imate solution to the complex Monge-Ampére equation, i.e., when J(o) = 1+ O(0"*?). Here,
J (o) is the Levi-Feffermann determinant defined by

J(0) == — det (g ‘Qk> . (1.10)

;i Qjk

afye
To derive our results we use the Gaufl equation for “semi-isometric” immersions of pseudo-

In this case, the formula for S_ 3. . is also considerably simplified; see Corollary

hermitian manifolds into K&hler manifolds. More precisely, we consider (M, := —idp) as a
pseudohermitian submanifold of the Kéhler manifold C"*! equipped with the metric w := i900.
Then, df = +*w and hence ¢ is semi-isometric in the sense of [24]. By the Gaufl equation, the
pseudohermitian curvature of 8 is obtained from the Kéhler curvature of w and the second
fundamental form. Using this fact, our computations become rather simple, since the second
fundamental form II only involves derivatives of ¢ of order at most three.

The second purpose of this paper is to give an affirmative answer to a question posed recently
by Case and Gover. In [2], Case and Gover constructed a pseudohermitian invariant Z’ in
dimension five (n = 2), namely,

1 ) 1 g2 1 2
I/ = _gAb|Soc376| + Z ‘ 04376,0| + ER|So¢576‘ ) (111)

where R is the Webster’s scalar curvature. The formula for 7' was stated in an equivalent
form in [2] as for the middle term the CR analogue of the Cotton tensor V5. was used (see

[12| 2]). They proved that the total Z’-curvature is a secondary invariant, at least in the case
co(HY) = 0, in the sense that

/ 70 A (d6)? :/ 7'0 A (d6)?, (1.12)
M5

M5
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for arbitrary pseudo-Einstein structures 6 and 0. Moreover, as a local pseudohermitian invariant,
T’ transforms as follows: If § = €6, then by [2, (8.17)]

ST =7 +2Re X'V, T, (1.13)

where
1

Xo==5

5 w3 SP e+ v S

EB'yU| . (114)

As discussed in [2, Remark 8.11], Z' can be formally regarded as the “prime analogue” of the
——2 ~ __
conformal invariant ‘VRm of Fefferman and Graham, where V and Rm are the covariant

derivative and Riemannian curvature tensor, respectively, of the ambient metric; see [10, (9.3)].
A question posed by Case and Gover in [2] asks whether there exists a 5-dimensional pseudo-
Einstein manifold for which X, is nonzero. By using Theorem we show that in fact X, is
a nontrivial CR invariant for generic real ellipsoidal hypersurfaces of revolution in C3, which
appeared in [28], and consequently, Z’ is not a local CR invariant.

Theorem 1.2. The CR invariant one-form X, is nontrivial on real ellipsoids of revolution

E(a) in C3 defined by
o(z1, 22, w) := |z12 4 |22)® + |w|? + Re(aw?) —1 =0, a€R, (1.15)
unless a = 0.

In fact, we shall give an explicit formula for the CR invariant one-form X, on E(a) which is
manifestly nontrivial.

As briefly explained in [2, Remark 8.12], a pseudo-Einstein CR manifold for which X, # 0
provides a counterexample to a conjecture by Hirachi regarding the decomposition of the scalar
secondary invariants on compact CR manifolds. Precisely, in [I3| p. 242], it is conjectured
that a pseudohermitian scalar invariant for which the integral is a secondary invariant can be
decomposed into the sum of a constant multiple of the Q’-curvature, a local CR invariant, and a
divergence. As [2] does not contain full details, we sketch an argument suggested to the authors
by the referee that disproves the Hirachi conjecture as follows. It can be shown that in the
situation of T heoremthe divergence Re VX, is not identically zero on E(a), see Remark 1
at the end of Section [ Then there exists a smooth function T on E(a) such that

Re/ XOVY 0 A (d6)> / Y Re(VX,) 0 A (d6)? # 0.

Therefore, using (|1.13)) above, we obtain

4
dt |,

/ I g€ 0 A (d9)? = 2Re XV, YO A (dh)* #0.

E(a) E(a)

Thus, the total Z’ is not CR invariant and hence Z' cannot be the sum of a local CR invariant
and a pure divergence.

We note that the one-form X, vanishes identically on CR spherical manifolds. More generally,
it vanishes identically on CR manifolds for which there exists a pseudohermitian structure with
parallel Chern-Moser—Weyl tensor, i.e., when V5,3 5 =
question whether Hirachi’s conjecture is true on CR spherical manifolds. It is worth pointing

= 0. Thus, it is still an interesting open

out that there exist examples showing that the CR sphericity of the manifold is not necessary
for the vanishing of X, ; see Example
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The paper is organized as follows. In Section [2| we study the second fundamental form of
real hypersurfaces that are semi-isometrically immersed in a Ké&hler manifold. The result in
this section is crucial for the next section. In Section [3] we give explicit formulas for the pseu-
dohermitian curvature tensor and the Chern—Moser—Weyl tensor for general real hypersurfaces
and prove Theorem In Section 4] we compute the one-form X, on the real ellipsoids of
revolution in C? and prove Theorem [1.2l In the last section, we give an example of a family of
locally equivalent nonspherical CR manifolds with parallel Chern—-Moser—Weyl tensor and, as a
simple application of our formula , show that the hypersurfaces in this family are pairwise
inequivalent globally.

2. REAL HYPERSURFACES IN KAHLER MANIFOLDS AND SECOND FUNDAMENTAL FORM

As briefly explained in the introduction, our approach to the Chern—Moser—Weyl tensor is
via the Gauf} equation, derived recently in [24]. For this approach, we shall compute explicitly
the second fundamental form of a real hypersurface in C"*!, viewed as a CR submanifold of a
Kaéhler manifold with an appropriate metric.

Let M C C™*! be a nondegenerate real hypersurface defined by o = 0 with do # 0 on M. It
is well-known (see, e.g., [21] [§]) that there is a vector field £ of type (1,0) such that

¢ 19000 = irdo, 0o(€) = 1. (2.1)

The function r, given by r = pj,—gﬁj SE, is often called the transverse curvature of the defining
function.

We first suppose that the complex Hessian g, is nondegenerate so that o is a Kéhler potential
for a (pseudo-) Kihler metric w on a neighborhood U of M in C"*!. In this situation, it can
be shown that r = |£|? = |0o|;2, for w being the Kihler metric with potential g, i.e., w = i00p.
Moreover, ¢: (M, 0) — (U,w) is a semi-isometric CR immersion in the sense of [24], i.e. t*w = d#.

Let V and V be the Tanaka—Webster connection of (M,60) and the Chern connection of
(U,w), respectively. Then the second fundamental form of M is defined by the Gauf} formula
(see [24])

(Z,W) =V ;W — VzW. (2.2)

Here Z and W are smooth extensions of Z and W to a neighborhood of M in U.
Taking the trace of II on horizontal directions, we obtain the (1,0)-mean curvature vector
field H. Namely,

1 n
H ==Y II(Za, Za). 2.3
n 2 ( ) (2.3)

Basic properties of IT have been studied in [24]. In particular, Gaui—Codazzi-Mainardi equa-
tions relating the Tanaka—Webster curvature and the torsion to the curvature of w have been
proved. In the following, the convention for the curvature operator of V is

R(X,Y)Z =VxVyZ -VyVxZ7Z — V[X,y}Z. (2.4)
The torsion Ty of the Tanaka—Webster connection is nontrivial:

Ty(X,Y) = VxV — Vy X — [X,Y]. (2.5)



6 MICHAEL REITER AND DUONG NGOC SON
If T is the characteristic direction associated to 0, i.e., T' is the unique real vector field on M
that satisfies

T|dd=0, 6(T)=1, (2.6)

then the pseudohermitian torsion is defined by
X =Ty (T, X). (2.7)

The curvature of the Chern connection of w will be denoted by R. The aforementioned Gauf
equations are given as follows:

Proposition 2.1 (Gaufl equations [24]). Let v: (M,0) — (X,w) be a pseudohermitian CR
submanifold of a Kdahler manifold. Let R and R be the curvature operators of the Tanaka—
Webster and Chern connection on M and X, respectively. Then

(1) for X, Z € T(T*°M) and Y, W € T(T%' M), the following Gauf equation holds:
w))

(R(X,Y)Z,W) = (R(X,Y)Z,W) + (II(X, Z), 1Y,
Y)(Z,W)), (2.8)

— [H? (Y, Z)(X, W) + (X,
(2) for X, Z € T(T*°M),
(1X,2) = —i{Il(X,Z), H). (2.9)

We point out that although the proof given in [24] is for the strictly pseudoconvex case, it
also works for the Levi-nondegenerate case.

In order to apply these equations, we need to compute the second fundamental form II in
terms of the defining function. In fact, it was proved in [24] that, using our notation,

[(Zs, Z5) = —hgat, (2.10)

which implies H = —¢ and r = |H|%.

Below, we shall compute the “holomorphic” part II(Z,, Zg) of the second fundamental form.
For this purpose, we need the following formula for the Tanaka—Webster connection forms wg?
computed by Li and Luk [19] (see also [26]). Recall that the connection forms are defined by

VZs =wg?” ® Z,, and

where &g = hpz£7, see [19, (2.19)].
Then we have the following formula for II(Z,, Z3):

Proposition 2.2. Let M be a nondegenerate real hypersurface in C" ' defined by o0 = 0 with
do # 0. Assume that o has nondegenerate compler Hessian. Put w = i00g and 6 = 1*(i0p).
Then the inclusion v: (M,0) — (U,w) is a semi-isometric immersion. Moreover, if 0, # 0 and

Zao = 0Oq (Qa/@w) w, then
11(Zo, Z5) = (0" D% 0r) - haﬁ) 3 (212)

where Dgﬁ is the 2nd order differential operator defined in and hopg = D? ( ).
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Proof. Let V be the Chern connection of w := 1000 and let F;?l be its Christoffel symbols given

by Ffl = "0 0. Put
k kKl k Oa i 98 -k Qa8
Uaﬂ = Dgg(é’z') = Faﬁ - irwﬂ - ?Fwa + 042

Ow w w

k
Tk

Since Z, = 0 — (0a/0w)0w, we have, after some simplification,
V2.Z5 = Ulsdl, — (hap/ 0w)Ou-
From , we obtain
VzaZs = (W7 Zahgs = £500)0y + (1/0w)(0ap — 01" Zahps)Ow.
We obtain,
I(Za, Z8) = V7,25 — N 2,23
= (Uly = W Zalhsy) + a0 ) 0,
+ (1/0w) (0yh"" Za(hgg) = 0aks — hap + 0wUl3) Ow.

To simplify (2.16)), we compute directly that

ha ha
Zo(os/0w) = ~22, Zalog/0a) = —2,
o Ow

w

hence

0008 Opww hozﬁQ,B'LD

QalBpw haﬁ@ﬁw _ 980awa + _

Zalhgs) = 0510 —
alhon) = @sja 0w Ow Ow 02, 0w

_ 0n0Bwa 0a0p 0Bww ha,@@ﬂ@ww + hozﬂ@ﬂ@ﬂ}w 09 Owwa 0a 0103 Qwww

0w | 0w |? |ow|? |0w|? |ow|? |ow|? 0w

Multiplying (2.18]) with h7#, we obtain, after simplification, that

Q'Yha2,8 N <Q,89w2m B Q,Bw) 5
|(9Q| |Qw’ Ow

v
fi — I @ kpe (.-
h%“Za(hﬂﬂ) = Uaﬁ — |8Q|2Q Daﬂ(gk) +

Plugging &7 = 07/|00|? into (2.19)), we find that
Uy = W Za(hau) + €303 = (0" Dg(0p) — has ) €.
Similarly, using (2.19) and (2.13]), we obtain that
_ Q Q'UJ —
oyh"" Zo(hpp) — 068 — hap + 0wUss = ‘ggp <9kD§B(91?:) B haﬁ)
Plugging (2.20)) and ([2.21)) into (2.16]), we find that

11(Zo, Z5) = (0" D24 (0p) — hap) €105,

which finishes the proof.
In a local frame Z,, the torsion tensor 7 has components denoted by A,g, i.e.,

TZ0 = A Z5.

o

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

We obtain the following formula for the torsion tensor which may be of independent interest.
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Corollary 2.3. Let M be defined by o = 0 with do # 0 and 6 = idp. Suppose that o, # 0, then
the torsion tensor Ang in the local frame Zy := 0o — (0a/0w) Ow is given by:

—idag = € D2 y(0g) = 1€ has. (2.24)

An alternative formula for the torsion was given in [20, Theorem 1.1]. In fact, it was proved
that, for strictly plurisubharmonic p,

Z' _
Aap = — 55 Zal0p) Z5("). (2.25)
00|
One can check that (2.24)) and (2.25]) are equivalent when g is strictly plurisubharmonic.

Proof of Corollary[2.5, We first assume that o,z is invertible. Since Ang = (7Za, Zp), it follows
from the Gaufl equation ([2.9) that

App = —i{Il(Zn, Z5), H)

= ill,p|H|?
_ i Ero ..\ _
=i (€"DE4l08) — IE*has) (2:26)

Here we have used the fact that H = —¢ and |H|? = r = |0p|~2. Thus, is proved in the
case when g, is nondegenerate.

To remove the assumption that ;i 18 invertible, we use an idea taken from [19]. Precisely, we
can replace o by o := o0+ Co?, for C' > 0 large enough, so that 0;1 is non-degenerate. Observe
that 8 = —i0p = —idp. To conclude the proof, we need to verify that the right-hand side of
does not change when p is replaced by p. Indeed, we can verify directly (or alternatively
use [24, Lemma 7.1]) that the following holds on M:

e =¢k, €2 = ¢ +2C. (2.27)

Moreover, on M, Dgﬁ = Dgﬂ and thus

DZ,(35) = D24(0r) + 2C0phag. (2.28)

Consequently, the right-hand side of (2.24) does not change when p is replaced by p, since
.Q,;ﬁk = 1, which completes the proof. ]

3. THE CHERN—MOSER—WEYL TENSOR

Similarly to the definitions of D? 5 and D? 5 we define a 4th order linear differential operator

0 : fn-
R, . by the following equation:

R (9) = 05777(Zar 25, 2, Zo). (3.1)
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In particular,

O« Qw,é»ya _ QB Qawvye - O~ Qana- _ O QaB’yw O« QB Ouw~e Qo Oy Qwﬁw(&

o
3.,=\0) = OB~ —
aro(Q) = Cons ow 0w Ow 0w 0w |? 02,
0005 OyyByw 030~ 0awws 0505 Qowyw 0~05 0 3ww B 00030~ Qwwwa
| owl|? |owl? %% |ow? |0w|? 0w
_ 000305 Qwwyw _ 030~ 05 Pawww _ a0~ 06 Oy Buww 0o 030~ 05 Qwwww (3 2)
|ow|? 0w low|? 0w |0w|? 0w |ow|* '

To work with general defining functions, we need to introduce some notation. Let ¢,z =
05 + (1 —7)oj05, then det(¢;;) = J(o) (see [21]), and hence v, is invertible. Let Y* be the
inverse of ¢,z and

Bk — w]’fv _ §]§E (3.3)
Then hP is the inverse of hq, which can be verified by a direct computation, and when
|00|? # 0,

Wk = o* — |9k, (34)
Our main result in this section is the following

Theorem 3.1. Let M be a nondegenerate real hypersurface in C*t1 defined by o = 0 with
do # 0 and J(9) # 0 on M. Assume g, # 0. Then the pseudohermitian curvature is given by

Ry = —RY5 (0) + W D2 (0p) D2, (0) + & (hughao + hashs5)

+ hB&‘SkDon(QE) + ha'yngg&(Qj) - ‘§|2hth5- (3.5)
and the Chern—-Moser—Weyl tensor is given by

Sapre = ~Ri,s(0) + 1" De (0r) D, (05) + hgat " Dé (05) + han&’ D (03) = € harhizs
1
+ g (meDls + 15D + hagDls + hao D23) 10g.J (o)
1

C(n+1)(n+2)
in the local frame Zy = 0q — (0a/0w) Ow-

(haghye + hashyg) KO D% log (o), (3.6)

Proof. We first assume that o,z is invertible. Recall that the curvature of the Kahler metric
i00p is given by ﬁjk[m
Proposition 6.2], but mind our opposite sign convention for the curvature operator on Kéhler
manifolds). Then

= —0mikj T " 0mkp0yj, in the coordinates zj,j = 1,2,...,n+1 (see [23,

R(Za: 25, 2y, Z5) = —R2 ;. (o) + "D, (05) D5, (05)- (3.7)

Plugging this into the Gaufl equation , we have that
Ropno = —R%5 (0) + 0* D, (05) D5 (05) + €* (hashs + hash.5)
~ 6 (D8, (05) — o) (¢"D2, (0) ~ D35
= —RE; (0) +WFDE(0r) D2, (05) + I (haghae + hash,3)
+ he€" D8, (0F) + hay€ DY (0)) — €[ har iz, (3.8)
which shows , as desired.
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The Chern—Moser—Weyl tensor can be obtained by taking the complete tracefree part of

R To this end, we use the formula for the Ricci tensor obtained by Li-Luk [19], namely,

aB’ya"
R.5= —D§B log J(0) + (n + 1)[¢[*hy 3. (3.9)

This and (3.5)) immediately implies (3.6)), using Webster’s formula [26], (3.8)].
In order to remove the assumption that g,z is invertible, we use an idea taken from [19] as

before. We denote by quEj the adjugate matrix of g,z, then as in [21] we have,

Mo, det(o,z)
~ J(o)’ J(o)
Thus, the right-hand sides of and are rational expressions in terms of derivatives of
o with denominators are some powers of J(p). We replace o by g := o+ C? for some constant
C > 0. By a direct calculation, det(g;z) = det(g;) +2CJ(0) on M. Therefore, g is invertible
on M for every C' > 0 small enough since J(p) # 0. Observe that § = —idp = —idp on M.
Therefore, the right-hand sides of and do not change when C' > 0 varies. Passing
through the limit when C' — 0, which is allowed since J(p) # 0 and J(g) # 0 for all C > 0
small enough, we conclude the proof. ]

¢t €? = (3.10)

It was proved by Fefferman [9] that for each nondegenerate real hypersurface M, there exists
a defining function gy such that J(gp) =1+ O(Q6L+2). In this case, the formula for the Chern—
Moser—Weyl tensor is greatly simplified. Indeed, we have the following

Corollary 3.2. Let M be a nondegenerate real hypersurface defined by o = 0. Assume that
0w # 0 and J(o) = 1+ O(0?), then the Chern—Moser—Weyl tensor of (M, 0 := —idp) is given
in the frame Zy := 0o — (00/ 0w)O0w by

Sa,@'y& = _Rigﬁ/&(g) + hjkDgw(Ql_c)Dga(gj)
+hgs€ D&, (0F) + har€ D (05) — € hayhs. (3.11)
Proof. 1f J(0) = 1+0(0?) then clearly Diﬁ log J (o) = Dgﬁ log J(p¢) = 0 on M and the conclusion
follows immediately from Theorem O

Proof of Theorem [1.1] Since 0,i = 0jr we immediately obtain that all the terms involving 3rd
order derivatives in (3.5) vanish, which proves (1.8), since |£|? = |0o| 2. To show (1.9)), we use

(1.8) and compute,

— 1 —
__pap _ _ B 2]
Ros =0 Rogs = 53 ((n + 1)hoy — hach ) . (3.12)
Together with (3.9) we obtain
0 haeh%
Dt log J(0) = ——% 3.13
g logJ(e) FIER (3.13)
which proves ([1.9)). O

Let us conclude this section by discussing the relation between our formula (1.9) and the
Chern—-Moser normal form in [4]. It is well-known (Eq. (6.20) in [4]) that if a defining function
is given in the normal form, then the Chern—Moser—Weyl tensor at the centered point can be
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identified with the coefficient of the 4th order term. This relation was further elaborated in
[16], see also [15]. First, we suppose that the defining function takes the following form:

0 =1Im(w) — ||,z||2 + Fy(z,2) + R(z, z, Re(w)), (3.14)
where the fourth order term is
1
Fy(z,2) = 1 Z Ca3752a2,327257 (3.15)

and the remainder term R(z, z, Re(w)) has “weight” and degree at least five; see [4] for details.
Since Fj is real-valued, the coefficients in Fy can be arranged to satisfy

CaByé = CyBas = CysaB> Capys = Cpady- (316)

Since po(0) =0 for a = 1,2,...,n, it is readily seen that

R 5.5(0)|0= 0ap5(0) = capss- (3.17)
Moreover, the terms involving derivatives of order < 3 are
haglo= 00y haplg=0,  D&,(ep)|,=0 (3.18)

Futhermore, since det[gﬂ;] = 0 at the origin, we obtain that |£|?> = 0 at the origin. Thus, the
full curvature tensor and the torsion tensor at the origin are

RoszS ‘0 =R (801’07 aB|0a 8'y|07 85‘0) = CaB~s> (319)
Aaglo = (1(8al0), 95 | ) = 0. (3.20)

If the defining function is normalized such that the coefficients c, 3.5 are completely tracefree

apy
(which is the case for the Chern-Moser normal form), then

Ry lo=Y capy =0, Rlo=0. (3.21)
v

Consequently, in this case
Sané lo = Rapns lo = Capns: (3.22)
This is Eq. (6.20) in [4] modulo a sign convention.

4. THE CR INVARIANT ONE-FORM X, ON THE REAL ELLIPSOIDS OF REVOLUTION

Let M C C"*! be a strictly pseudoconvex CR manifold defined by o0 = 0. There exists
a unique pseudohermitian structure  on M which is volume-normalized with respect to { :=
¥ (dzy Adza A -+ Adzpy1). Indeed, it follows from [8] that if J(0) = 1 on M, then t*(idp) is the
volume-normalized structure with respect to ¢. In general, for an arbitrary defining function p,
if we define o1 = J(g)_l/(”+2)g, then o; is a defining function for M which satisfies J(g1) = 1
on M. Thus, 0:=J (g)_l/ ("+2)50 does not depend on the choice of the defining function and
is volume-normalized. Consequently, there is a universal partial differential operator P such
that the CR invariant one-form X, defined by is represented in the volume-normalized
scale 6 by P(g)‘ o for an arbitrary defining function g. Theorem which follows from the
proposition below, implies that P is nontrivial and hence the nonvanishing of X, is a “generic”
phenomenon.

In the rest of this section, we prove the following
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Proposition 4.1. Let E(a) be given as in Theorem and 0 be the unique pseudohermitian
structure on E(a) that is volume-normalized with respect to the section ¢ = dz; Adzz /\dle(a).

Then,
7 _ a'llz1°(90* 0w + 9al|2]*0a)

Xa(6) = 96[0c]1” (all2l20u + 4100 05)2adza + all2|* (g%, — 4100)du.
(4.1)

Hence, X, (0) is not identically zero on E(a) for a # 0.

Proof. The proof is a matter of calculations, using the procedure described in the previous

section and in particular Theorem [1.1l To simplify notations, put ¢(w) = |w|? +Re(aw?) — 1 so

that ¢ = ||z[|* + g(w), with ||z]|* = [21[* + - + |za[*. On E(a), g(w) = —||z||*. Since o, = Gz,

we have |0¢|? = |00|2 = ||z]|?> + |ow|®>. As proved in [24], |H|> = |0p|72 is the transverse

curvature of p. We have by , and
ZaZpB

azZa23 2023

hoj =00+ =2 heg=D2%,(0) = hoP = §op — 4.2
af ap T ‘wazv ap a,B(!Q) Q%u ) ap ‘3@‘2’ (4.2)
such that )
W = WhP = g, 7 hP = LT’Z’""fw. (4.3)
Then, Theorem gives
S 7a22/32a2ng B a?||z||* (hgahps + hpahss)
7T 00l oul? (n+1)(n +2)|00f°
+ a2||z||2 (hﬁdzpza' + hpézz,@zcr + h66zpza + hpa'zﬁza) (4 4)
(n +2)[ow[?|00|* ' '
Raising the indices, using,
haBzﬂ = Za‘@w|2 (4.5)
00]?
we obtain,
g HPY _a2\gw]22az#21,z7 _ GQHZH4 (W7 oy + W' 6ary)
¢ |00f® (n+1)(n +2)|90|"
a?||z||? (5auzyz7|gw]2/]8.g\2 + W Zo 2y + SaryzuZu| 0w|? /00| + hwzﬂéa) A
’ (1 + 2] 0g[° 1o
and
SB&pEr _ _CL2||Z||4 (hﬁ@hpﬁ + hp&hﬁ&) B a2|Qw|425§a2ng
(n+1)(n+2)[00|° |Op[*
N a?||2|]?|ow? (WP¥2pZ5 + hPo252, + hP% 2570 + hP7 2572, (47)
(n+2)[00f® ' '
From this, and since,
__ |I=IP[9ef
h.32028 = ————5—, 4.8
aB*a~p ‘Qw’2 ( )
we can calculate the norm of the Chern—-Moser—Weyl tensor:
_ -1 4 8
|S|2 _ Sﬂapasﬁapa_ _ n(n ) a HZH (49)

(n+1)(n+2) |00
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We point out that we have used the completely tracefree property of the Chern—-Moser—Weyl
tensor to simplify our computations.

To determine the unique volume-normalized pseudohermitian structure on E(a) with respect
to ¢ := t*dz, observe that the Levi-Fefferman determinant satisfies (see [19, Lemma 2.2] and its
proof),

J(0) = det [0;z] (—o+ |00/*), (4.10)
such that J(g) = |00|? on E(a). If we put

log [dol?, (4.11)

1 1
T L e

and

0 = e"0, (4.12)

then by [8], 0 is volume-normalized with respect to ¢ and hence is pseudo-Einstein by [17].
The pseudohermitian invariants of 6 will be indicated with a tilde. It is well-known that the
Chern-Moser—Weyl tensor transforms as follows ([26]):

§B&pc‘r = eusﬁam?) §a,ul7'y = 672USO¢#D’Y’ (413)
and

n(n —1)a*

8 4/(n+2)712. 414
oy Do P1el (4.14)

812 = e72IS[3 =

For 5, we shall use the same holomorphic frame Z, so that the Levi matrix becomes

g = —id0(Za, Z5) = €"hqp. (4.15)
Differentiating (4.14)) with respect to Z, we have

n(n — 1)a4 ||z||62a
(n+ 1)(n +2) [0g 11/

ValSP? = (400 +a(6 —2/(n +2)|2llPew/0w) . (4.16)

To simplify computations, we can use the fact that, on E(a), ||z||> = —¢ and |00]*> = —q+ |quw|*.
Since ¢ only involves the variable w, the differentiation reduces essentially to J,,.
To compute the term in X, which involves the torsion, we use the following formula (Eq.
(2.16) in [17])
- Z'gag = —1Ang + Ua g — UUg, (4.17)

where A, is computed in Corollary which in this case is given by

. aza23
— A= 5 —5. 4.18
0= BloeP 1
By a direct calculation, we have
aQ@Za

=Zu=—""=_ 4.19
o = et )0 /00P )

Furthermore, by using the formula for the connection forms (2.11f), we have
wa(Zg) = 2 (4.20)

A
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and hence
Ua,8 = ZplUa — Wa (Z8)uy
_ az3p <agfv ags 1) @’ ZaZsl2[P 0w
(n+2)03 00> \00]* 0w (n +2)03,|00l*
aZoZ 2a0%, )
= —-1]. 4.21
e 20
Therefore,

—Z'Avaﬁ = —Z'Aaﬁ + Uq, g8 — UUR

1 aZ.zs a(2n + 3)9%)
= n+1l14+—m-——-1. 4.22
raahe U G (422
Differentiating this with respect to Zy, we have that
~ a
— il Ayg = —m——————— O Z 0~ 2 Za2B2~yP 4.23
125408 = (712 2 10aF (Q(0aryZs + 6py2a) + ZaZs2, P) (4.23)
where 9
a(2n + 3) oz,
=n4 14 Tl 4.24
< CESIERE (424
and
2 0w ) (2n + 3)a? <|Qw\2 2 )
P= - Q-+ -
(IQwI2 100l 05 n+2 [Ool* |00
2 1 1 20(2n +3)ow  2a*(2n + 3)||z|]?
20t alntDow , 2@0tes IR,

|0w|? 00205 (n+2)0ul00?  (n+2)[dof!
The connection forms with respect to 8 are given as follows (see [5], page 137, equation (2.41)):
Wa'(Z5) = wa'(Z5) — uFhay = (€ — u') has. (4.26)
Thus,
Aaps = ZyAap — Wa''(Z5)Aup — WM (Z5) Ao
Here ¢p := Zzzl A’uﬁ(g# — ut). Note that ¢g is not tensorial.
Recall from [12] and section 2.3 of [2] that the CR analogue of the Cotton tensor V3. is
defined by
VQB’Y = Aa,ng + iP5, — iTyhyz — 2iT0h, 5, (4.28)
which satisfies [2, Lemma 2.1]
S

iy = —inVo5,. (4.29)

Here the pseudohermitian Schouten tensor P,3 is given by

p.— L (g _ Bhes 4.30
“5_n+2< aﬁ_2(n+1)> (4:30)
and
1 R, ) -
To=— (2(n+1) — i Ago, > (4.31)

These expressions are simplified on pseudo-Einstein manifolds as follows:
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Lemma 4.2. Let (M,n) be a pseudo-Einstein CR manifold of dimension 2n+ 1> 5. Then

i(Ryhos + Rahyg)
o, + ’
v n(n+1)

(4.32)

Spaﬁw _ :SPO‘B'YA

e (4.33)

ay,B
Proof. 1f 6 is pseudo-Einstein, then R,5 = (R/n)h,z and thus from (4.30) it follows that

1
P =—— h 3. 4.34
Byy Qn(n+1)RvV af ( )

Using the identity R, —i(n—1)Ans. = R 3 p Eq. (2.11) in [I7]), we find that (4.31]) becomes
’ ’ CMB,

1

Ty =——F——FR,.
2n(n + 1)R’

(4.35)

Plugging these expressions into (4.28)) we obtain that

(R ho3 + Rahyg
VaB = A, B+ ( Y e ) 'yﬂ)
v v n(n+1)

Then, (4.33) follows since the Chern-Moser—Weyl tensor is completely tracefree. The proof is
complete. O

To compute further in the proof of Proposition [4.1] we observe that

ZazuZuzy (Zubyw + Zy0u) = 2||2]2a, (4.36)
v I z z =97 2|owl”
(h dap + R 5cw) (Zubyw + Z40pn) = 22 (N — 1+ IE (4.37)
5au2yzv|9w|2 7 6ayzuzu|gw|2 5 = > _ _
— e+ Wz + — L ——— + WY 2,20 | (Zu0ny + 200
< ‘8@’2 ol ‘8@‘2 1% (M'Y ’Y#)
92—
=2 ((n—1)|00]* + 4|0w|?) ”@‘Q;“. (4.38)

Since S,“Phas = S,%7Phgs = 0, we have by Lemma [4.2 and using the identities (£36)(E.38),
that,
—’L';S’Va'ul_/'yvu,j»y = —Z.€_2uSa'w;71f4vM%,j
n(n—1) a’|[2]°Za 2
- 20 — |0w|2P
(n+ Do + 272 fogo-/oa g, (22~ 1ealF)
__n(n=1) at|[2]°%a  (2(2n + 3)al|z|* 0w
(n+1)(n+ 2)2|0p|H4—4/(n+2) (n 4+ 2)ow

Therefore, putting (4.16[), (4.29) and (4.39)) together and setting n = 2, we obtain:

—(n+ 1)]8@\2> . (4.39)

~ - 1 ~
Xo = —iSa"" Vo + Zvaysﬁ

1 a4HzH62a

T 24 |91 (’5Q\2 + 9aHzH2Qw/Qw) _ (4.40)

Thus, Xa # 0 on E(a), as desired. Plugging in the coframe 0% = dzo + (u* — £€*)0p and
simplifying the result, we obtain (4.1)). The proof is complete. 0
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Remark 1. Using 1 , we can further show that the divergence VX, is nontrivial by direct
calculations. Indeed, computing at w # 0, using

VX = e (Z5(Ka)h™ = 2(¢" — w) X, )
and letting w — 0, we find that
VXal|,_ o= —ia4(9a2 +1)#£0

if a # 0. Thus, as briefly sketched in Section |1} l ) furnishes a counterexample for the Hirachi
conjecture in the nonspherical case.

5. A HYPERSURFACE WITH PARALLEL CHERN-MOSER-WEYL TENSOR

If M® is CR spherical, then both X, and Z’ are trivial. More generally, if M° admits a
contact form such that

Sapra.p = Papra,p = 05 (5.1)

then X, = 0 and hence Z’ is CR invariant in this case. Using Theorem and Corollary

we give an explicit example of a nonspherical CR manifold such that the conditions in (5.1))

hold.

Example 5.1. Consider the ellipsoidal tube £ = E(1,1,...,1) given by o = 0, where
n+1 n+1

Q::Z\zj\z—i—ReZz]z—l.
j=1 3=1

We point out that this real hypersurface has been studied in various papers, e.g., [22] [7]. By
direct calculations,

n+1
_ Qa0
|8Q|2 = Z |2 + Zj|2 =20+2, hag=hyz =005+ QQﬁ, W = Zp41-
j:l w

With 6 := i0p, the Tanaka—Webster connection forms are
wg” = 3 (03hput" + oyhspt" — ids, 0) (5.2)
and the pseudohermitian curvature tensor is
ha,yhgﬁ hth’yc'T + hac—th/B

RaB'y& == 92 + 9 . (53)
Taking the trace, we see that R.ya = §h s and R = &-. Hence, 0 is pseudo-Einstein. On the
other hand, one can derive from ) and . that
RaB’y&,e - Ra,@*y&,% - Raﬁ’y&,o =0.

In other words, # is symmetric and, in particular, the Chern—-Moser—Weyl tensor is parallel.
This implies that X, = 0.

By removing the trace from R, we obtain

afBye
ha5h75 + hagh,yﬂ‘

S(lB'ya' = _§ha7h35' + 2(n 1) (54)
Thus,
_ 1)
o — n(n ’ 55
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which implies in particular that E is nonumbilical if n > 2 (the case n = 1 was treated in [7]).
Thus, in dimension five, the invariant Z'(#) from (1.11)) is given by

1
36
Example 5.2. Note that the real hypersurface £ in Example is noncompact. However, F

7'(6)

is locally CR equivalent to the compact Reinhardt hypersurface defined by ¥, := {g, = 0},

where
n+1
or(2,2) =) (oglz)? —r% r>0. (5.6)
j=1

There is a unique pseudohermitian structure 6, on ¥, such that (5.5) holds on X,. For this
structure, the local considerations on 3, and E agree. Moreover, with this normalization,

n

6, is invariant under CR diffeomorphisms and its volume [, 6, A (d@) is a global invariant.

Alternatively, for any 6, the integral [, | aBW\"“G/\(dQ)" is invariant; the latter interpretation
is valid for all cases (i.e., regardless whether M is nowhere umbilical or not), albeit the integrand

‘ aB'y&’nJrl
A seemingly more refined polynomial CR invariant that is built from S is the following:

is not polynomial in S when n + 1 is not even.

n+1l . az  p2 asz  p3 o, Qn4+1 Mo+l [e51
S = SCH 251 Saz 2 San " San+1 Hn+1

K1 (n 41 factors).

Clearly, the integral [,, S"T'0A(d6)™ is invariant. On %, the Chern-Moser—Wey! tensor 0fs

is parallel and hence S"*! is constant on ¥,. This constant can be computed explicitly from

(5.4). Indeed, raising the indices on both sides of (5.4]) yields

Salazmlm = Clhalul ho2k2 4, (50425#2 + 5#256!2) ,

(S35 [y 51

with ¢; = —1/2 and d; = 1/(2(n + 1)). For each k > 1,

L a2 p2 a3z p3 o, Ak Hk
S[k] T Sal M1 SaZ 2 Sak +1Mk +
takes a similar form:
a2 M2 Q2 42 Q2 L2 M2 2
S[k]al m —Ckhalulh —i—dk (50{15”1 +6a15,u1)7

with corresponding coefficients c; and dj, satisfying the following recursion relations:
Ch41 = nci1cg + 2¢pdy +2c1dg,  dpyr = 2drdg.

Solving for dj yields dy = %(n +1)7%. The recursion formula for the ¢;’s becomes

1 (/n?>+n-2 + 1
C = ——= C .
LT U it P (g 1)

This relation can be solved by setting yx = (n + 1)*"1ex + 1/(n? + n). Omitting the detailed
calculations, we present the result for c¢;:
2 —n—n2\"
( n—n ) B 1] .
2

1
n(n+ 1)k

Cr —
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Consequently,
Sn—H _ S[n] azulpa . Sazaluzul

= n2cicp + 2neid, + 2ne,d; + 4did,
1 n+1
- [ - ”] . (5.7)

n+1 2

Hence, S"*! is a real constant which is positive when n is odd and negative when n is even.

Finally, one can verify that Vol(%,, 5,,) = Cr~"! for some constant C' depending on n. This
and either or imply that X,’s are not globally equivalent for different values of . The
last observation was proved in the cases n =1 and n = 2 by Burns-Epstein [I] and Marugame
[22], respectively, using the same strategy. Precisely, in both cases, the authors computed the
Burns—Epstein invariant for >,’s which turn out to be different for different values of r. When
n > 3, the Burns-Epstein is difficult to compute, however, as pointed out to the authors by the
referee, Marugame’s consideration can be generalized easily to treat the general case.
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