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Lời nói đầu

Tài liệu này gồm 6 chương, được biên soạn dựa trên các bài giảng môn
Phương pháp tính tại Trường Đại học Phenikaa trong học kì I năm học
2022–2023, và đã được sửa đổi, bổ sung trong các năm học tiếp theo.

Với mục đích ban đầu là cung cấp cho sinh viên một tài liệu tham khảo
phù hợp với chương trình học, tài liệu trình bày các nội dung theo đề cương
chi tiết học phần Phương pháp tính (2 tín chỉ) do Khoa Khoa học cơ bản
xây dựng, với thời lượng 30 tiết. Tuy nhiên, trong quá trình biên soạn, một
số chủ đề như hàm ghép trơn, phương pháp bình phương bé nhất, công
thức cầu phương Gauss, v.v., đã được bổ sung, giúp tài liệu có thể sử dụng
cho các học phần 45 tiết.

Tài liệu được biên soạn dựa trên một số giáo trình quen thuộc ở Việt
Nam như sách Phương pháp tính của GS. Tạ Văn Đĩnh và sách Giải tích
số của GS. Phạm Kỳ Anh cùng với một số giáo trình nước ngoài khác như
cuốn Advanced Engineering Mathematics (Part E: Numeric Analysis), 10th
Edition của E. Kreyszig.

Ngoài những nội dung mang tính lý thuyết thuần tuý, tài liệu cũng đề
cập đến công cụ tính toán là phần mềm thống kê và ngôn ngữ lập trình R.
Phần mềm R đóng vai trò quan trọng trong các mục thực hành với hệ đại
số máy tính (gọi tắt là CAS), được thiết kế nhằm minh hoạ và đánh giá các
phương pháp tính toán. Ngoài ra, một số tính toán và hình vẽ trong tài liệu
cũng được thực hiện bằng R.

Tài liệu được biên soạn trong thời gian ngắn, song song với việc giảng
dạy trên lớp năm học 2022–2023. Mặc dù trong các năm học 2023–2024 và
2024–2025 tài liệu đã được sửa đổi và bổ sung khá nhiều, nhưng chắc chắn
vẫn còn không ít thiếu sót. Tác giả hi vọng tài liệu này sẽ hữu ích cho việc
giảng dạy và học tập môn Phương pháp tính ở bậc đại học, và rất mong
nhận được những ý kiến đóng góp của bạn đọc.
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CHƯƠNG 1. SAI SỐ

1.1 Khái niệm sai số, chữ số có nghĩa, chữ số chắc

Mục này nói về những khái niệm cơ bản nhất của giải tích số, đó là sai số
của số gần đúng. Tài liệu tham khảo: T. V. Đĩnh [6, §1.1].

Khi làm việc với những vấn đề thực tế, chúng ta thường gặp các giá trị
gần đúng (cũng gọi là giá trị xấp xỉ) của các đại lượng. Đó là các giá trị mà
sự sai khác so với giá trị đúng của đại lượng đang xét là nhỏ, có thể bỏ qua
mà không làm ảnh hưởng tới những khía cạnh khác đáng quan tâm. Ví dụ,
diện tích của một mặt bàn hình tròn bán kính 1m có thể coi một cách gần
đúng là 3,14m2. Đó là vì chúng ta lấy π xấp xỉ bằng 3,14 (viết π ≈ 3,14) và
coi mặt bàn là hoàn toàn tròn. Sai lệch của nó đối với kết quả đúng trong
trường hợp này là nhỏ và có thể bỏ qua trong những vấn đề đơn giản.

1.1.1 Sai số thật sự, sai số tuyệt đối

Nếu a là một số gần đúng của một đại lượng A có giá trị thật sự a ⋆, thì hiệu
số

εa := a ⋆−a (1.1)

gọi là sai số thật sự (actual error) của a . Như vậy, giá trị đúng bằng tổng
của giá trị gần đúng và sai số.

Chúng ta thường quan tâm nhiều hơn đến độ lớn của sai lệch giữa hai
giá trị đúng và gần đúng mà bỏ qua thông tin giá trị nào lớn hơn. Độ sai
lệch này cho bởi giá trị tuyệt đối |εa |= |a ⋆−a | của sai số, gọi là sai số tuyệt
đối (absolute error) của a .

Thông thường, chúng ta muốn tìm một giá trị gần đúng a của A khi giá
trị thật a ⋆ không thể hoặc khó có thể tìm được. Trong những tình huống
ấy, không thể tính được sai số thật sự và sai số tuyệt đối của a . Tuy nhiên,
trong nhiều trường hợp, có thể tìm được số dương∆a sao cho

|a ⋆−a | ≤∆a . (1.2)

Số ∆a thỏa mãn bất đẳng thức (1.2) cho một đánh giá sai số của số gần
đúng a được gọi là sai số tuyệt đối giới hạn của số gần đúng. Như vậy, sai
số tuyệt đối của một số gần đúng không vượt qua sai số tuyệt đối giới hạn
của nó.

Ví dụ 1.1. Đo nồng độ NaCl trong nước biển lấy từ một vùng biển miền
Trung, người ta thu được kết quả là 35g/l, với sai số không vượt quá 0,01
(g/l). Hãy chỉ ra một giá trị gần đúng của nồng độ NaCl trong nước biển
nói trên cùng với một sai số tuyệt đối giới hạn của nó.

Lời giải
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Trong ví dụ này, người ta đã chỉ ra rằng a = 35 là giá trị gần đúng của nồng
độ NaCl trong nước biển với đánh giá sai số |εa | ≤ 0,01, có nghĩa là có thể
chọn∆a = 0,01.

Lưu ý rằng, giá trị sai số tuyệt đối giới hạn là do chúng ta chọn cho phù
hợp với mục đích của chúng ta, nhưng phải thoả mãn ước lượng (1.2). Tuy
nhiên, sai số tuyệt đối giới hạn càng nhỏ thì (1.2) càng tốt. Vì vậy, trong các
điều kiện phù hợp, chúng ta chọn các số∆a > 0 bé nhất có thể thỏa mãn
điều kiện (1.2).

Nếu số gần đúng a của một đại lượng A có sai số tuyệt đối giới hạn∆a ,
thì có thể viết

A = a ±∆a .

Có nghĩa là nếu a ⋆ là giá trị thực sự của A thì

a ⋆−∆a ≤ a ≤ a ⋆+∆a .

Ví dụ, hằng số π có một giá trị gần đúng là 3,14, với một sai số tuyệt đối giới
hạn có thể chọn là 0,0016. Vậy, chúng ta có thể viết

π= 3,14±0,0016.

Nếu không chỉ rõ sai số tuyệt đối giới hạn, chúng ta có thể viết π ≈ 3,14,
đọc là “π xấp xỉ 3,14”.

1.1.2 Sai số tương đối

Để đánh giá sai số trong mối liên hệ với độ lớn của bản thân số đó, chúng
ta có khái niệm sai số tương đối: Nếu a là một số gần đúng của a ⋆ ≠ 0 thì tỉ
số

δa :=
|a ⋆−a |
|a ⋆|

(1.3)

gọi là sai số tương đối (relative error) của a .
Từ đánh giá sai số tương đối, có thể đánh giá được sai số tuyệt đối. Thật

vậy, bởi bất đẳng thức tam giác quen thuộc của hàm giá trị tuyệt đối, chúng
ta có

|a ⋆|= |(a ⋆−a ) +a | ≤ |a ⋆−a |+ |a |.
Do đó, chúng ta có

|a ⋆−a |=δa |a ⋆| ≤δa (|a ⋆−a |+ |a |),

và vậy thì
|a ⋆−a |(1−δa )≤ |a |δa .

Bất đẳng thức trên chỉ có ý nghĩa khi δa < 1. Với giả thiết này, chúng ta có

|a ⋆−a | ≤ |a |
�

δa

1−δa

�

. (1.4)
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Vế phải của (1.4) cho một sai số tuyệt đối giới hạn của một số gần đúng a
tính qua sai số tương đối của nó.

Ngược lại, nếu∆a là một sai số tuyệt đối giới hạn của a :

|a ⋆−a | ≤∆a ,

thì ta suy ra

δa ≤
∆a

|a | −∆a
, (1.5)

với điều kiện∆a < |a |.

Ví dụ 1.2. Đo một góc A, người ta thu được kết quả là a = 20◦45′. Biết rằng
sai số tương đối của phép đo không lớn hơn 0,15%. Hãy tìm một sai số tuyệt
đối giới hạn của nó.

Lời giải

Một độ tương đương với 60 phút (′). Như vậy, khi đổi ra đơn vị phút thì

a = 20◦45′ = 20×60′+45′ = 1,245′.

Theo giả thiết δa ≤ 0,15%= 0,0015. Do đó,

∆a = |a |
�

δa

1−δa

�

≤ 1,245×
�

0,0015

1−0,0015

�

≈ 1,87031 (′).

Vậy, A = 20◦45′±1,87031′.

Ví dụ 1.3. Người ta dùng hai thiết bị đo, A và B , để đo nồng độ NaCl trong
một dung dịch. Thiết bị A cho kết quả 98,82 (mg/l) và thiết bị B cho kết quả
98,56 (mg/l). Biết kết quả cho bởi thiết bị A có sai số tương đối không vượt
quá 0,5%.

1. Hãy ước lượng sai số tương đối của kết quả cho bởi thiết bị B .

2. Nếu một thiết bị C cho kết quả là 51,16 (mg/l) thì có thể nói gì về sai
số tương đối của kết quả này?

Lời giải

Gọi a = 98,82 và a ⋆ là giá trị đúng của nồng độ muối NaCl trong dung dịch
đó. Giả thiết về sai số tương đối của a có thể được viết lại là

δa =
|a ⋆−a |
|a ⋆|

≤ 0,005, (1.6)

Chúng ta hãy xét hai trường hợp sau đây:
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Trường hợp 1. a ⋆ ≥ a . Khi đó, từ (1.6), chúng ta thu được

a ⋆−98,82= |a −a ⋆| ≤ 0,005|a ⋆|= 0,005a ⋆,

và từ đó kết luận được

a ≤ a ⋆ ≤
98,82

0,995
≤ 99,32.

Vậy, nếu ã = 98,56 là kết quả đọc được từ B thì

δã =
|a ⋆− ã |
|a ⋆|

=
a ⋆−98,56

a ⋆
≤

99,32−98,56

98,82
≈ 0,00769≤ 0,77%.

Trường hợp 2. 0< a ⋆ < a . Tương tự như trường hợp 1, chúng ta bỏ dấu giá
trị tuyệt đối trong (1.6) và giải bất phương trình thu được để có

a ⋆ ≥
98,82

1,005
≈ 98,328≥ 98,32.

Chúng ta lại chia làm 2 trường hợp con:
Trường hợp 2(a): a ⋆ < ã . Khi đó,

|a ⋆− ã |= ã −a ⋆ ≤ 98,56−98,32= 0,24.

Vậy,

δã =
|a ⋆− ã |
|a ⋆|

≤
0,24

98,32
≈ 0,002441< 0,25%.

Trường hợp 2(b): a ⋆ ≥ ã . Khi đó,

|a ⋆− ã |= a ⋆− ã ≤ 98,82−98,56= 0,26.

Từ đó suy ra

δã =
|a ⋆− ã |
|a ⋆|

≤
0,26

98,56
≈ 0,00264≤ 0,27%.

Như vậy, chúng ta kết luận ã xấp xỉ a ⋆ với sai số tương đối không vượt quá
0,77%.

Gọi a ′ = 51,16 là kết quả đọc từ C. Trong trường hợp 1 ở trên, ta có đánh
giá

98,82−51,16

99,32
≤δa ′ ≤

99,32−51,16

98,82
.

Từ đây, sau khi quy tròn, chúng ta thu được

48,00%≤δa ′ ≤ 48,74%.

Còn trong trường hợp thứ hai, 98,32≤ a ⋆ ≤ 98,82, nên

98,32−51,16

98,82
≤δa ′ ≤

98,82−51,16

98,32
.
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Từ đây, sau khi quy tròn, chúng ta thu được

47,72%≤δa ′ ≤ 48,75%.

Như vậy, chúng ta kết luận được sai số tương đối của a ′ không nhỏ hơn
47,72% và không vượt quá 48,75%.

1.1.3 Chữ số có nghĩa, chữ số chắc

Mỗi số thực a có một biểu diễn thập phân dạng at at−1 · · ·a0,a−1a−2 · · ·, có
nghĩa là

a =
∑

s≤t

as 10s , as ∈ {0, 1, 2, . . . , 9}. (1.7)

Vế phải của (1.7) có thể là tổng hữu hạn hoặc là một chuỗi vô hạn hội tụ
(có vô hạn as với s là số nguyên âm). Ví dụ, một số gần đúng của π là số
a = 3,1416 có thể viết là

3,1416= 3×100+1×10−1+4×10−2+1×10−3+6×10−4,

tức là có dạng (1.7) với a0 = 3, a−1 = 1, a−2 = 4, a−3 = 1, và a−4 = 6.
Trong biểu diễn thập phân của một số gần đúng, các chữ số kể từ chữ

số khác không đầu tiên tính từ trái sang phải gọi là các chữ số có nghĩa
(significant digit). Ví dụ, các số 3,14 và số 0,00314 cùng có 3 chữ số có nghĩa.
Ba chữ số 0 trong biểu diễn của 0,00314 dùng để xác định vị trí dấu thập
phân, nhưng không có nghĩa trong việc xác định sai số tương đối của nó.

Trong cách viết thập phân một số gần đúng a của một đại lượng A với
giá trị thực sự a ⋆, “độ tin cậy” của một chữ số phụ thuộc vào khả năng
đánh giá độ chính xác của số gần đúng ấy, tức là phụ thuộc vào một sai số
tuyệt đối giới hạn đã biết. Để nói về điều này, chúng ta có khái niệm chữ số
chắc (correct digit) của một biểu diễn thập phân của một số gần đúng.

Định nghĩa 1.1:

Cho a là một số gần đúng có biểu diễn (1.7) và sai số tuyệt đối giới
hạn∆a .

(i) Một chữ số as trong biểu diễn (1.7) là một chữ số chắc (theo
nghĩa hẹp) nếu

∆a ≤ 0,5×10s .

(ii) Một chữ số as trong biểu diễn (1.7) là một chữ số chắc (theo
nghĩa rộng) nếu

∆a ≤ 10s .
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Nhận xét 1.1. Lưu ý rằng một chữ số là chắc hay không phụ thuộc vào một
sai số tuyệt đối của số đó mà chúng ta biết được. Ví dụ, chúng ta biết rằng
π≈ 3,14 với sai số tuyệt đối∆a có thể chọn là 0,0016. Do∆a < 0,5×10−2 nên,
theo Định nghĩa 1.1, chữ số 4 ở hàng phần trăm là chữ số chắc theo nghĩa
hẹp. Hơn nữa, mọi chữ số có nghĩa nằm về bên trái của một chữ số chắc
đều là chữ số chắc nên xấp xỉ a = 3,14 của π có 3 chữ số chắc.

1.1.4 Cách viết số gần đúng

Như đã nói ở trên, chúng ta có thể viết số gần đúng a với sai số tuyệt đối
giới hạn∆a của một đại lượng A như sau:

A = a ±∆a .

Trong cách viết thập phân của một số gần đúng, chúng ta viết theo quy
ước “Mọi chữ số có nghĩa là chữ số chắc (theo nghĩa hẹp)”. Khi đó, một số
gần đúng thập phân có sai số tuyệt đối giới hạn không lớn hơn một nửa
đơn vị của chữ số cuối cùng.

Lưu ý, với quy ước như trên, biểu diễn thập phân của một số gần đúng
còn chứa đựng thông tin về sai số tuyệt đối của số đó.

Ví dụ 1.4. Chúng ta có thể viết số gần đúng của số π với 3 chữ số thập phân
là chữ số chắc như sau:

π≈ 3,142.

Đó là vì chúng ta đã biết rằng

∆3,142 = |π−3,142|< 0,5×10−3.

Với 4 chữ số thập phân là chữ số chắc, ta có

π≈ 3,1416.

Ta viết được như vậy bởi vì

∆3,1416 = |π−3,1416|< 0,5×10−4.

Ví dụ 1.5. Tính sai số tuyệt đối giới hạn của các số gần đúng sau đây, biết
rằng trong biểu diễn thập phân của chúng, tất cả chữ số có nghĩa đều là
chữ số chắc theo nghĩa hẹp.

(a) a = 0,024 (b) b = 0,3200

Lời giải
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(a) Biểu diễn thập phân của số gần đúng a có 2 chữ số chắc trong đó chữ
số chắc ở hàng bé nhất là chữ số 4 ở hàng 10−3. Vì vậy ta có

∆a ≤ 0,5×10−3.

(b) Vì chữ số chắc ở hàng bé nhất của biểu diễn thập phân của b là chữ
số 0 ở hàng 10−4 nên

∆b ≤ 0,5×10−4.

1.1.5 Quy tròn số gần đúng

Mục này nói về quy tròn số (hay làm tròn số), và sai số của quá trình đó.
Tài liệu tham khảo: T. V. Đĩnh [6, §1.3].

Khi làm việc với các số thập phân, chúng ta thường phải bỏ bớt các chữ
số cho gọn. Những số hữu tỉ như 1/3, 1/7, những số vô tỉ như π, e , hoặc

p
3,

không thể biểu diễn được dưới dạng số thập phân có hữu hạn các chữ số.
Do đó, việc bỏ đi một số chữ số trong biểu diễn thập phân của chúng là
điều không tránh khỏi. Việc bỏ bớt các chữ số của một số viết dưới dạng
thập phân gọi là quy tròn số, hay làm tròn số, hoặc thu gọn (round-off).
Hiển nhiên, việc quy tròn số sinh ra một sai số mới, gọi là sai số quy tròn
(round-off error), là hiệu của số đã quy tròn và chưa quy tròn. Trị số tuyệt
đối của hiệu đó gọi là sai số quy tròn tuyệt đối.

Khi quy tròn một số gần đúng, người ta thường chọn quy tắc quy tròn
thỏa mãn điều kiện sau: “Sai số quy tròn tuyệt đối không lớn hơn một nửa
đơn vị của hàng cuối cùng của số đã quy tròn.” Như vậy, 4,014749 quy tròn
tới 4,01475. Trong trường hợp chữ số cuối là 5, ta có hai sự lựa chọn: quy
tròn lên, và quy tròn xuống. Trong trường hợp này, nói chung, ta quy tròn
sao cho chữ số ở hàng ngay trước đó về bên trái trở thành chữ số chẵn. Khi
đó, 4,01475 quy tròn tới 4,0148. Ví dụ này cũng cho thấy rằng quá trình quy
tròn số không có tính bắc cầu: số 4,014749 quy tròn trực tiếp thành 4,0147.

Với quy tắc này, nếu một số gần đúng a có biểu diễn thập phân có mọi
chữ số có nghĩa đều là chữ số chắc, thì mọi quy tròn của a cũng thỏa mãn
điều kiện này. Ví dụ, cơ số của logarit tự nhiên e có biểu diễn thập phân vô
hạn không tuần hoàn:

e ≈ 2,7182818.

Quy tròn số xấp xỉ này ta có các số quy tròn là 2,718282 (bỏ bớt 1 số), 2,71828
(bỏ bớt 2 chữ số), hoặc 2,718 (bỏ bớt 4 chữ số).

Giả sử a là một số xấp xỉ của một đại lượng A với giá trị đúng a ⋆. Nếu
ã là một số quy tròn của a với sai số quy tròn tuyệt đối |a − ã | thì, bởi bất
đẳng thức tam giác, ta có

|a ⋆− ã |= |a ⋆−a +a − ã | ≤ |a ⋆−a |+ |a − ã |.
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Như vậy, sai số tuyệt đối của số quy tròn không vượt quá tổng của sai số
tuyệt đối của số ban đầu và sai số tuyệt đối quy tròn.

Ví dụ 1.6. Biết đại lượng A có giá trị gần đúng a = 3,1388 với sai số tương
đối δa không vượt quá 3,5%. Quy tròn số a được một số gần đúng ã của A
với hai chữ số sau dấu thập phân. Hãy tìm một sai số tuyệt đối giới hạn của
số quy tròn ã .

Lời giải

Trước hết, chúng ta hãy tìm một sai số tuyệt đối của a : có thể lấy

∆a =
|a |δa

1−δa
=

3,1388×0,035

1−0,035
≤ 0,1139.

Quy tròn số a , thu được ã = 3,14, với sai số tuyệt đối quy tròn là

|a − ã |= |3,1388−3,14|= 0,0012.

Sai số tuyệt đối giới hạn của số quy tròn mà chúng ta có bằng tổng của sai
số tuyệt đối của số chưa quy tròn và sai số tuyệt đối quy tròn:

∆ã =∆a + |a − ã |= 0,1139+0,0012= 0,1151.

Ví dụ 1.7. Biết rằng số Archimedes π có một xấp xỉ

π≈ 3,1415926535.

Một số quy tròn π cần ít nhất bao nhiêu chữ số sau dấu thập phân để sai
số tuyệt đối không vượt quá 0,3×10−3?

Lời giải

Nếu xem 3,1415926535 là một số gần đúng của π thì sai số tuyệt đối của
nó bé hơn 10−10, không đáng kể so với yêu cầu đạt được sai số bé hơn
0,0003= 0,3×10−3. Vậy, chúng ta hãy đi tìm một số quy tròn với sai số quy
tròn bé hơn 3×10−4.

Rõ ràng số quy tròn phải có ít nhất 3 chữ số bên phải dấu thập phân
bằng với các chữ số tương ứng của số ban đầu. Vì vậy, hãy xét số quy tròn
3,142. Rõ ràng số quy tròn này có sai số quy tròn lớn hơn 0,0004, không
thỏa mãn yêu cầu sai số tuyệt đối không vượt quá 0,3 ·10−3. Từ đó suy ra
cần phải quy tròn với ít nhất 4 chữ số sau dấu thập phân.

Nhận thấy rằng số quy tròn 3,1416 có sai số quy tròn không vượt quá
0,73465 ·10−5 thỏa mãn điều kiện sai số tuyệt đối giới hạn bé hơn 0,3 ·10−3.
Vậy, một biểu diễn thập phân của số gần đúng của π cần 4 chữ số sau dấu
thập phân để sai số tuyệt đối giới hạn bé hơn 0,03%.
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1.1.6 Quy tròn số trong bất đẳng thức

Giả sử một đại lượng A được đánh giá như sau:

A ≤ a ,

với a có biểu diễn thập phân có nhiều chữ số sau dấu thập phân. Chúng ta
muốn quy tròn số a để thu được số ã với ít chữ số thập phân hơn sao cho
bất đẳng thức trên vẫn đúng. Nếu không có thông tin gì thêm, bắt buộc
chúng ta phải chọn ã > a . Từ đây chúng ta có quy tắc quy tròn lên: Số quy
tròn lên lớn hơn số ban đầu và sai số quy tròn tuyệt đối bé hơn đơn vị hàng
cuối cùng.

Ví dụ 1.8. Quy tròn số gần đúng trong vế phải của bất đẳng thức sau:

A ≤ 0,024674

để được số với 2 chữ số thập phân. Khi đó, chúng ta cần quy tròn lên số ở
vế phải để thu được

A < 0,03.

Với bất đẳng thức chiều ngược lại, A ≥ a , khi quy tròn a , ta cần theo quy
tắc quy tròn xuống. Chi tiết dành cho bạn đọc.

1.1.7 Mối liên hệ giữa quy tròn số và chữ số có nghĩa

Dựa vào quy tròn số, ta có thể đưa ra khái niệm số xấp xỉ tới k chữ số có
nghĩa. Khái niệm này thường xuất hiện trong nhiều sách khác nhau. Dưới
đây, ta nêu định nghĩa cụ thể của nó, như sau:

Định nghĩa 1.2:

Giả sử số gần đúng a của số a ⋆ ≠ 0 có hữu hạn chữ số và k ≥ 1. Chúng
ta nói a xấp xỉ a ⋆ tới k chữ số có nghĩa nếu biểu diễn thập phân của
a và a ⋆ quy tròn về cùng một số thập phân có k chữ số có nghĩa với
k là số nguyên dương lớn nhất mà có tính chất như vậy.

Để minh hoạ, chúng ta tìm hiểu hai ví dụ sau đây.

Ví dụ 1.9. Xét a = 3,14121 và a ⋆ =π≈ 3,1415926. Quy tròn π tới 4 chữ số có
nghĩa, chúng ta thu được 3,142. Quy tròn a tới 4 chữ số có nghĩa, thu được
3,142. Quy tròn a và a ⋆ tới 5 hoặc 6 chữ số có nghĩa, ta đều thu được hai số
thập phân khác nhau. Vậy, a xấp xỉ π tới 4 chữ số có nghĩa.

Ví dụ 1.10. Xét a = 12,2502 và a ⋆ = 12,2496. Nếu quy tròn a và a ⋆ tới 3 chữ
số có nghĩa, chúng ta lần lượt thu được các số thập phân 12,3 và 12,2. Tuy

10



1.2. SAI SỐ PHÉP TOÁN

nhiên, quy tròn a và a ⋆ tới 5 chữ số có nghĩa, chúng ta cùng thu được
12,250. Như vậy, a xấp xỉ a ⋆ tới 5 chữ số có nghĩa.

Nhận xét 1.2. Nếu a xấp xỉ a ⋆ tới k chữ số có nghĩa thì có đánh giá sau
về sai số. Chẳng hạn, giả sử a ⋆ > 0 cho đơn giản. Khi đó, có duy nhất số
nguyên r sao cho

a ⋆ = a ⋆0 ×10r ,

với 1≤ a ⋆0 < 10. Nếu a xấp xỉ a ⋆ tới k chữ số có nghĩa thì có đánh giá sai số
tuyệt đối

|εa | ≤ 10r−k+1 (1.8)

Vế phải của đánh giá này phụ thuộc vào số nguyên r . Mặt khác,

δa =
|εa |
|a ⋆|
≤

10r−k+1

|a ⋆|
=

10−k+1

|a ⋆0 |
≤ 10−k+1, do a ⋆0 ≥ 1.

Hay
δa ≤ 10−k+1. (1.9)

Đó là mối liên hệ giữa sai số tương đối và số chữ số có nghĩa.

Ví dụ 1.11. Trở lại Ví dụ 1.10, chúng ta có a = 12,2502 và a ⋆ = 12,2496, trong
khi đó, k = 5. Do đó, từ Nhận xét 1.2 chúng ta kết luận sai số tương đối của
a phải nhỏ hơn 10−4. Điều này cũng có thể thấy bằng tính toán trực tiếp,

δa =
|a −a ∗|

a ∗
= 4,898119×10−5 < 10−5+1,

như mong đợi.

1.2 Sai số phép toán

Giả sử x1, x2, . . . , xn là một số đại lượng mà chúng ta chỉ biết các giá trị gần
đúng của chúng cùng với các sai số tương ứng và u là một đại lượng phụ
thuộc vào x1, . . . , xn theo một công thức đã biết. Chúng ta muốn tính gần
đúng đại lượng u và ước lượng sai số của u theo các sai số của xi . Nói cách
khác, chúng ta phân tích sự lan truyền của sai số (error propagation) trong
quá trình tính toán.

Để đơn giản, hãy bắt đầu với trường hợp n = 2 và giả sử u là một hàm
số của hai biến x , y :

u = f (x , y ),

trong một số trường hợp đơn giản của hàm f (x , y ), bao gồm tổng x + y và
tích x y .
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1.2.1 Sai số của một tổng

Giả sử x và y là hai số xấp xỉ của đại lượng X , Y có giá trị thực là x ⋆ và y ⋆,
tương ứng. Giả sử đại lượng U là tổng của X và Y : U = f (X , Y ) = X + Y .
Rõ ràng giá trị thực của U là u ⋆ = x ⋆+ y ⋆, và một giá trị gần đúng của U là
u = x + y . Mặt khác, ta đặt εx = x ⋆ − x và εy = y ⋆ − y là các sai số thực sự
của x và y . Khi đó

εu := u ⋆−u = (x ⋆+ y ⋆)− (x + y )
= (x ⋆− x ) + (y ⋆− y )
= εx +εy .

Do đó, theo bất đẳng thức tam giác,

|εu |= |εx +εy | ≤ |εx |+ |εy |.

Vậy ta có thể phát biểu thành quy tắc sau: Sai số tuyệt đối giới hạn của một
tổng hoặc hiệu bằng tổng của sai số tuyệt đối giới hạn của các số hạng. Quy
tắc này cũng đúng cho tổng của nhiều số hạng.

Nhận xét 1.3. Vì sai số tương đối của u là

δu =
|εu |
|u ⋆|
≤
|εx |+ |εy |
|x ⋆+ y ⋆|

=
|x ⋆|δx + |y ⋆|δy

|x ⋆+ y ⋆|

nên, khi x ⋆ và y ⋆ cùng dấu, thì |x ⋆+ y ⋆|= |x ⋆|+ |y ⋆| và ta có thể đánh giá

δu ≤
|x ⋆|δx + |y ⋆|δy

|x ⋆+ y ⋆|
<δx +δy . (1.10)

Tuy nhiên, nếu x ⋆ và y ⋆ trái dấu, thì |x ⋆ + y ⋆| =
�

�|x ⋆| − |y ⋆|
�

� và đánh giá δu

như (1.10) không còn đúng nữa.
Để minh họa một cách chi tiết hơn, chúng ta hãy xét ví dụ sau: Giả sử

chúng ta cần tính
p

2022−
p

2020 và viết kết quả dưới dạng số thập phân.
Bằng cách tính gần đúng các căn thức bậc hai với kết quả làm tròn với 4
chữ số có nghĩa,

p
2022≈ 44,97,

p
2020= 44,94.

Sử dụng các kết quả này, chúng ta thu được xấp xỉ
p

2022−
p

2020≈ 0,03 với
chỉ một chữ số có nghĩa.

Để có kết quả chính xác hơn, bằng cách khử căn thức ở tử số, ta có thể
viết p

2022−
p

2020=
2

p
2022+

p
2020

≈
2

89,91
≈ 0,02224.

Có thể kiểm tra được kết quả cuối cùng 0,02224 có 4 chữ số có nghĩa là chữ
số đáng tin. Ví dụ này minh hoạ một quy tắc là, trong thực hành, nếu có
thể chúng ta cần tránh việc trừ các số gần nhau.
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1.2.2 Sai số của một tích

Giả sử đại lượng U là tích của hai đại lượng X và Y , tức là U = X Y . Gọi x ⋆

và y ⋆ tương ứng là các giá trị thực của X và Y . Cũng giả sử x và y tương
ứng là hai giá trị xấp xỉ với sai số tương ứng là εx và εy . Khi đó, có thể coi
u = x y là một giá trị gần đúng của giá trị thực u ⋆ = x ⋆y ⋆ của đại lượng U .

Để đánh giá sai số của u , ta tính toán trực tiếp

εu = x ⋆y ⋆− x y

= x ⋆y ⋆− (x ⋆−εx )(y
⋆−εy )

= x ⋆εy + y ⋆εx −εxεy .

Theo bất đẳng thức tam giác,

|εu |
|x ⋆y ⋆|

=

�

�

�

�

x ⋆εy + y ⋆εx −εxεy

|x ⋆y ⋆|

�

�

�

�

≤
�

�

�

�

εy

y ⋆

�

�

�

�

+
�

�

�

εx

x ⋆

�

�

�+
�

�

�

εx

x ⋆

�

�

� ·
�

�

�

�

εy

y ⋆

�

�

�

�

.

Như vậy
δu ≤δx +δy +δxδy . (1.11)

Nếu các xấp xỉ x và y đủ tốt, thì δx và δy là rất nhỏ (δx ≪ 1, δy ≪ 1) nên
δxδy rất nhỏ so với δx và δy . Khi đó, từ (1.11) ta có thể coi δx +δy là một
sai số tương đối của x y . Như vậy, ta có quy tắc: Sai số tương đối giới hạn
của một tích xấp xỉ bằng tổng các sai số tương đối giới hạn của các nhân tử.

1.2.3 Sai số của một thương

Giả sử U = Y −1, y và y ⋆ lần lượt là một giá trị gần đúng và giá trị thật sự của
đại lượng Y . Khi đó, u = y −1 là một xấp xỉ của u ⋆ = (y ⋆)−1. Chúng ta chỉ xét
trường hợp δy < 1. Khi đó, để đánh giá độ chính xác của u , ta xét

εu = u ⋆−u =
1

y ⋆
−

1

y
=

y − y ⋆

y y ⋆
=

−εy

y ⋆(y ⋆−εy )
.

Do đó,
|εu |
|u ⋆|

=
|εy |

|y ⋆−εy |
≤

|εy |
|y ⋆| − |εy |

=
δy

1−δy
.

Nếu xấp xỉ y là đủ tốt, tức là δy ≪ 1, thì ta có thể lấy δu ≈δy .
Nếu V = X /Y là một thương với v ⋆ = x ⋆/y ⋆ là giá trị đúng và v = x/y là

giá trị xấp xỉ, thì, bằng tính toán tương tự như trên, ta có đánh giá

δv =
|εv |
|v ⋆|
≤
δx +δy

1−δy
. (1.12)
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Với δy rất nhỏ, 1−δy ≈ 1 và ta có thể lấy δv ≈δx +δy . Từ đó có quy tắc: Sai
số tương đối giới hạn của một thương xấp xỉ bằng tổng sai số của tử thức và
mẫu thức.

1.2.4 Công thức tổng quát cho đánh giá sai số tích luỹ

Giả sử U là một đại lượng phụ thuộc các đại lượng X1, X2, . . . , Xn , viết là

U = f (X1, X2, . . . , Xn ),

với f là một mà số của n biến số. Để đánh giá sai số của đại lượng U qua
các sai số của X j , ta cần giả thiết f khả vi liên tục.

Nếu x ⋆j là giá trị thực sự của X j và x j là giá trị gần đúng, thì theo

định lí số gia giới nội, có một điểm (c1, c2, . . . , cn ) nằm trên đoạn thẳng
nối (x1, x2, . . . , xn ) và (x ⋆1 , . . . , x ⋆n ) sao cho

εu = f (x ⋆1 , . . . , x ⋆n )− f (x1, . . . , xn ) =
n
∑

j=1

∂ f

∂ X j
(c1, c2, . . . , cn )εx j

.

Từ đây, ta suy ra công thức sai số tương đối

δu =
|εu |
|u ⋆|
≤

n
∑

j=1

�

�

�

�

∂ f

∂ X j
(c1, c2, . . . , cn )

Á

f (x ⋆1 , . . . , x ⋆n )

�

�

�

�

|εx j
|

≈
n
∑

j=1

�

�

�

�

∂ ln f

∂ X j
(x ⋆1 , . . . , x ⋆n )

�

�

�

�

|εx j
|.

Ví dụ 1.12. Nếu u = x α với x > 0 và hằng số α> 0 thì

δu ≈
d ln(x α)

dx
|εx |=α

�

�

�

�

d ln x

dx

�

�

�

�

|εx |=α
|εx |
|x ⋆|
=αδx .

Nhắc lại rằng, đánh giá này chỉ tốt khi δx rất nhỏ: δx ≪ 1.

Nhận xét 1.4. Trong công thức tổng quát, ta không có được đánh giá sai số
một cách chính xác, mà chỉ có được đánh giá gần đúng của sai số. Đó là vì
đạo hàm của hàm số f tham gia trong biểu thức, nhìn chung, có thể phức
tạp mà chúng ta không thể đánh giá được hết sự ảnh hưởng của nó đến
kết quả tính toán.

1.3 Phân loại sai số

Trong việc quá trình tính toán gần đúng một đại lượng thực tế, có nhiều
giai đoạn dẫn đến sai số của kết quả cuối cùng, như sai số từ các phép đo
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trong thực nghiệm, sai số từ phương pháp giải, và sai số khi tính toán (bao
gồm sai số của việc quy tròn số). Vấn đề sai số trong phép đo đạc hoặc thu
thập dữ liệu không nằm trong khuôn khổ của bài giảng. Dưới đây, chúng
ta trình bày sơ lược về sai số của phương pháp giải và sai số khi tính toán.

1.3.1 Sai số phương pháp

Một số đại lượng được biểu thị bằng các công thức phức tạp, không thể
tính được chính xác bằng hữu hạn các phép tính. Để minh họa cho vấn đề
này, ta hãy xét ví dụ sau (T. V. Đĩnh [6, §1.5]).

B =
∞
∑

n=1

(−1)n n−3 (1.13)

là một giá trị được định nghĩa bởi một chuỗi hội tụ: Vế phải của (1.13) có
vô hạn số hạng.

Nếu không có công thức đơn giản cho tổng vô hạn B , thì để tính B ,
người ta có thể dùng phương pháp chặt chuỗi vô hạn: chọn một giá trị
nguyên dương m ≥ 1 và đặt

Bm :=
m
∑

n=1

(−1)n−1n−3.

Bởi vì limm→∞Bm = B nên có thể lấy

Bm ≈ B ,

là một giá trị gần đúng của B .
Phương pháp này sinh ra một sai số ∆= |Bm −B |, gọi là sai số phương

pháp. Tuy nhiên, chúng ta có thể ước lượng được sai số này như sau:

∆= |Bm −B |=

�

�

�

�

�

∞
∑

n=m+1

(−1)n−1n−3

�

�

�

�

�

< (m +1)−3.

Như vậy, phương pháp chặt đối với chuỗi vô hạn trên sinh ra một sai số
được đánh giá bởi (m +1)−3. Sai số này nhỏ (tùy ý) khi ta chọn m lớn (tùy
ý). Sai số đó gọi là sai số phương pháp.

1.3.2 Sai số tính toán

Tiếp tục nói về ví dụ trong mục trước, việc tính Bm để xấp xỉ B cũng gặp
phải khó khăn nếu m lớn. Trong quá trình tính Bm chúng ta cũng có chỉ
thu được giá trị gần đúng, và sai số trong phép tính này gọi là sai số tính
toán.
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Ví dụ, với m = 6, ta tính được

B6 = 1−
1

23
+

1

33
−

1

43
+

1

53
−

1

63
=

194353

216
×10−3.

Quy tròn số, chúng ta có

B6 =
194353

216
×10−3 ≈ 0,90,

với sai số∆0,90 = 0,5×10−2. Sai số quy tròn này là một loại sai số tính toán.
Mặt khác, sai số phương pháp ở mục trước cho ta

|B −B6|<
1

73
< 0,3×10−2.

Vậy,
|B −0,90|< 0,4×10−2.

Với hai chữ số sau dấu thập phân là chữ số chắc, ta viết

B ≈ 0,90,

với sai số 0,4×10−2 là tổng hợp của sai số phương pháp và sai số tính toán.

1.4 Giới thiệu ngôn ngữ lập trình R

Phần mềm thống kê R là một công cụ mạnh mẽ được sử dụng rộng rãi
trong cộng đồng nghiên cứu và phân tích dữ liệu. Tuy nhiên, R không chỉ
là một phần mềm tính toán thống kê, mà còn là một môi trường tính toán
mở và miễn phí, có khả năng ứng dụng trong tính toán số. Trong tài liệu
này, chúng ta sẽ tìm hiểu cách sử dụng R cho mục đích trực quan hoá (như
vẽ đồ thị) và thực hiện tính toán tự động theo các thuật toán giải số. Mục
tiêu chính ở đây là minh hoạ cách thiết lập các chương trình máy tính đơn
giản từ lí thuyết và giảm thời gian tính toán trong các ví dụ cụ thể.

Tài liệu tham khảo về sử dụng R: Bloomfield [3], Jones–Maillardet–
Robinson [7].

Tải và cài đặt R, bạn đọc có thể tham khảo https://www.r-project.
org/

Các tính toán cơ bản trong R

Phần mềm thống kê R có thể sử dụng như một máy tính cầm tay. Nó có thể
thực hiện các phép tính số học (cộng, trừ, nhân, và chia), phép luỹ thừa,
hàm logarith, hàm lượng giác và hyperbolic, và một số hàm Bessel hay
hàm Lambert (gói pracma). Cách dùng R cho các tính toán cơ bản cũng rất
đơn giản. Chúng ta có thể gán vào các biến những giá trị bằng dấu <-, hoặc
dấu =, và sau đó thực hiện các phép toán trên các biến đó.
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CAS 1.1. Trong ví dụ sau đây, chúng ta tính xấp xỉ biểu thức

c = a + b =
p

2+
Æ

100+
p

2

trong R. Kết quả như sau:

# Dùng dấu phẩy thập phân

options(OutDec = ",")

a <- sqrt(2)
b <- sqrt(100 + a)
c <- a + b

# In kết quả

print(c)

## [1] 11,48468

Đối với các phép toán có nhiều số hạng mà chúng có quy tắc tính toán
chung, chúng ta có thể lập chương trình để tính toán. Hãy tính gần đúng
một xấp xỉ của số e làm ví dụ. Bằng cách viết e x dưới dạng tổng của một
chuỗi số hội tụ,

e x =
∞
∑

n=0

x n

n !
= 1+ x +

1

2!
x 2+

1

3!
x 3+ · · · ,

chúng ta thu được

e ≈ eapprox = 1+
1

1!
+

1

2!
+ · · ·+

1

7!
. (1.14)

CAS 1.2. Đoạn chương trình R đơn giản sau đây minh hoạ vòng lặp “while”
để tính tổng ở vế phải của (1.14).

# Định nghĩa một hàm tính tổng 1 + 1/(2!) + ... + 1/(n!)
e_approx <- function(n) {

partial_sum = 1
term = 1
count = 0

# Bắt đầu vòng lặp while
while (count < n) {

count = count + 1

17
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term = term / count
partial_sum = partial_sum + term

}
# Kết thúc vòng lặp và trả về kết quả partial_sum
return(partial_sum)

}

# Khai báo n = 7 và chạy thủ tục e_approx() vừa định nghĩa
n <- 7
result <- e_approx(n)

# In ra kết quả
print(result)

## [1] 2,718254

Kết quả thu được có thể xem là một xấp xỉ của cơ số logarith tự nhiên:
e ≈ 2,718254.

Tính toán với các hàm số đặc biệt

Phần mềm thống kê và ngôn ngữ R cũng có thể tính toán với một số hàm
số quan trọng, như hàm Bessel hay hàm Lambert, v.v.

Hãy lấy hàm Lambert làm ví dụ. Đối với biến thực x ∈R, hàm Lambert
có hai nhánh chính là W0 và W−1. Với x ≥ 0, y =W0(x ) nếu y e y = x , trong khi
đó, với e −1 ≤ x < 0 thì y =W0(x ) nếu y e y = x và y ≥−1. Nếu y <−1, y e y = x
thì y =W−1(x ).

Hàm Lambert xuất hiện trong khi giải một số phương trình đơn giản
liên quan đến hàm mũ. Ví dụ, xét phương trình x 5x−1 = 9. Để giải gần đúng,
chúng ta đặt biến mới u = x ln(5) và viết

x 5x−1 =
ue u

5 ln 5
.

Từ đó, đưa phương trình về dạng

ue u = 45 ln(5).

Vậy, u =W (45 ln(5)) và do đó

x =
W (45 ln(5))

ln 5
.

Đó là biểu diễn nghiệm đúng của phương trình, thông qua hàm Lambert
W .
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CAS 1.3. Để tính gần đúng nghiệm của phương trình x 5x−1 = 9 dưới dạng
số thập phân, chúng ta có thể dùng gói pracma1 của R như sau:

# Nạp gói pracma
library(pracma)

# Gọi hàm lambertWp()
lambertWp(45 * log(5)) / (log(5))

## [1] 1,950202

Tính toán với số phức

Về những khái niệm và phép toán cơ bản trên số phức, bạn đọc có thể tìm
đọc N. V. Khuê–L. M. Hải–N. Đ. Sang [8, Chương 1, tập 1].

Các số phức được viết dưới dạng

z = a + b i .

Ví dụ, đoạn mã lệnh sau đưa vào hai số phức và thực hiện các phép toán
cơ bản trên chúng.

# Khai báo các số phức z và w
z <- 3 + 4i
w <- 5 - 8i

# Tính z + w^2 và gán giá trị vào biến q
q <- z + w^2

# In ra giá trị của q
print(q)

## [1] -36-76i

Chúng ta thu được q = z +w 2 =−36−76i , với z = 3+4i và w = 5−8i .
Để tính môđun (modulus) và góc cực (argument) của một số phức, có

thể dùng Mod() và Arg(). Ví dụ, với z =
p

3+ i ,

# Khai báo z
z <- sqrt(3) + 1i

# In ra giá trị của |z|
print(Mod(z))

1pracma: Practical Numerical Math Functions. DOI: https://doi.org/10.32614/CRAN.

package.pracma
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## [1] 2

# In ra giá trị Arg(z)
print(Arg(z))

## [1] 0,5235988

Kết quả thu được |z |= 2 và argument chính Arg(z ) =π/6≈ 0,523599.
Trong R, căn bậc n của một số phức được hiểu là nhánh chính (principal

branch) của hàm z 1/n . Ví dụ,

# Khai báo số phức z = -46 + 9 i
z <- - 46 + 9i

# Tính căn bậc 3 của z và gán vào biến w
w <- z^(1/3)

# In ra giá trị của w
print(w)

## [1] 2+3i

Kết quả w = 2+3i thoả mãn w 3 = z =−46+9i .
Nếu z là một số thực, chẳng hạn z =−2, để tính căn phức, ta viết

z <- -2 + 0i
w <- z^(1/3)
print(w)

## [1] 0,6299605+1,091124i

Kết quả thu được:

(−2)1/3 = exp
�

1

3
Log(z )

�

= exp
�

1

3

�

ln |z |+ iArg(z )
�

�

=
3p

2(cos(π/3) + i sin(π/3)).

Một cách xấp xỉ thì

(−2)1/3 ≈ 0,629961+1,091124i .

Ở trên, Log(z ) là nhánh chính của hàm logarith phức.
Phần mềm R cũng làm việc được với dạng mũ của số phức (chẳng hạn,

công thức Euler).
Ví dụ, đoạn mã lệnh
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exp(log(2) + (pi/3) * 1i)

## [1] 1+1,732051i

cho chúng ta

exp(ln(2) + iπ/3) = 2(cos(π/3) + i sin(π/3)) = 1+
p

3 i .

Quy tròn số trong R

Trong R, chúng ta có thể đặt tuỳ chọn về số chữ số thập phân khi quy tròn
số bằng options(digits = n), trong đó n là số các chữ số còn lại sau làm
tròn. Ví dụ:

# In ra giá trị căn bậc hai của 2
print(sqrt(2))

## [1] 1,414214

# Đặt tùy chọn hiển thị kết quả có 4 chữ số
options(digits = 4)

# In ra giá trị căn bậc hai của 2
print(sqrt(2))

## [1] 1,414

Bạn đọc hãy quan sát các kết quả đầu ra và đưa ra nhận xét cho riêng
mình.

Để làm tròn một số gần đúng trong R tới một số chữ số thập phân nhất
định, chúng ta có thể dùng round(number, digits), trong đó, digits chỉ
số các chữ số sau dấu thập phân.

Dưới đây là một số ví dụ về làm tròn số.

# Làm tròn 2,9451 tới 2 chữ số sau dấu thập phân
round(2.9451, 2)

## [1] 2,95

# Làm tròn sau khi làm tròn
round(round(2.9451, 3), 2)

## [1] 2,94

Bạn đọc hãy quan sát kết quả thu được và cho nhận xét.
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Nếu muốn quy tròn số tới một số chữ số có nghĩa nhất định, chúng ta
dùng signif()2.

options(digits = 6)
signif(2.45301, 2)

## [1] 2,5

signif(2.45301, 6)

## [1] 2,45301

signif(2.45301, 5)

## [1] 2,453

1.5 Câu hỏi và bài tập

1. Khi đo khối lượng của một lít nước ở 0◦C, người ta thu được p = 999,847±
0,001 (gram). Hãy tính sai số tuyệt đối, sai số tương đối, và nêu ý nghĩa
rút ra từ phép đo này.

2. Hãy xác định chữ số chắc của một số gần đúng a trong các trường hợp
sau đây:

(a) a = 2,56732,∆a = 0,0005.

(b) a = 0,245123, δa = 1,3×10−3.

3. Hãy quy tròn các số đúng sau đây với 3 chữ số chắc. Tính các sai số tuyệt
đối và sai số tương đối tương ứng.

(a) 0,123456.

(b) 2,022.

(c) 0,01501.

(d) −0,00142857.

4. Giả sử các số thập phân trong các phép toán dưới đây là các số quy tròn
có tất cả các chữ số có nghĩa là chữ số chắc. Hãy tính kết quả của các
phép toán cùng với các sai số tuyệt đối tương ứng:

(a) 3,2062+5, 948.

(b) 4,46−1,752.

(c) 2,747×8,83.

(d) 10,473÷0,064.

2Hàm signif() được lấy tên từ các chữ cái đầu của từ Tiếng Anh “significant digits”, có nghĩa
là “các chữ số có nghĩa”.
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5. Cho các số gần đúng x = 0,85, y = 1,34, và z = 1,132, với mọi chữ số có
nghĩa là chữ số chắc. Hãy xác định giá trị của hàm số u cùng với sai số
tuyệt đối giới hạn ∆u và sai số tương đối giới hạn δu trong các trường
hợp sau:

(a) u (x ) =
p

1+ x .

(b) u (x , y ) = x 3/y .

(c) u (x , y ) = ln(x + y 2).

(d) u = (x + y 2)/z .

6. Biết rằng hằng số Euler e có dạng

e = 1+
1

1!
+

1

2!
+ · · ·+

Rn

(n +1)!
,

với 1<Rn < 3. Tìm một biểu diễn thập phân của e với 5 chữ số chắc.

7. Độ pH của một dung dịch được tính bởi pH =− log10[H
+] với [H+] là hoạt

độ của ion H+ (tính theo mol/l). Giả sử ta biết pH = 4,25±0,02. Tính gần
đúng [H+] và sai số của nó.

8. Giả sử E = 1
2 m v 2. Hãy chỉ ra một cách đo các đại lượng m và v với độ

chính xác như thế nào để sai số tuyệt đối giới hạn∆E không vượt quá
0,5×10−3.
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Chương2
Tính gần đúng nghiệm
của một phương trình phi
tuyến

Trong chương này, chúng ta sẽ tìm hiểu các phương pháp tính nghiệm gần đúng mà có
thể áp dụng để giải các phương trình như (2.1) cũng như rất nhiều phương trình khác
nảy sinh trong khoa học và kĩ thuật, bao gồm phương pháp chia đôi, phương pháp lặp
đơn, phương pháp Newton–Raphson cùng một số phương pháp khác.

Cụ thể hơn, nội dung chính của chương này bao gồm

• Khái niệm cơ bản về phương trình, nghiệm đúng, và nghiệm xấp xỉ.

• Khoảng tách nghiệm, một số phương pháp tìm khoảng tách nghiệm

• Các phương pháp tìm nghiệm xấp xỉ: Phương pháp lặp đơn, Newton–Raphson,
chia đôi, dây cung, vị trí sai (regula falsi), và Steffensen.

• Một số đánh giá sai số của nghiệm xấp xỉ.

Tài liệu tham khảo chính ở đây là T. V. Đĩnh [6, Chương 2].
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2.4.4 Tóm tắt thuật toán Newton–Raphson . . . . . . . . . . . . 53

2.5 Phương pháp dây cung và một số phương pháp khác . . . . 55
2.5.1 Phương pháp dây cung . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.2 Phương pháp Steffensen . . . . . . . . . . . . . . . . . . . . . . 57

2.5.3 Phương pháp vị trí sai (regula falsi) . . . . . . . . . . . . . . 58

2.6 Câu hỏi và bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Một người thợ kim hoàn dùng một đồng tiền vàng hình tròn, có đường kính 2cm,
mỏng và có độ dày đồng đều, để chế tác 4 chiếc nhẫn vàng. Người thợ chia đồng tiền
thành 4 phần có khối lượng bằng nhau bằng cách cắt dọc theo 3 đường thẳng song
song, trong đó, một đường cắt đi qua tâm hình tròn và hai đường cắt còn lại đối xứng
với nhau qua đường cắt thứ nhất.

Dựa trên các kiến thức hình học, có thể thấy rằng để 4 miếng vàng thu được có khối
lượng như nhau thì khoảng cách d từ tâm hình tròn đến mỗi đường cắt ngắn hơn phải
là

d =
a

p
1+a +

p
1−a

,

trong đó a là một số dương thỏa mãn phương trình

x = cos(x ). (2.1)

Vấn đề ban đầu tưởng chừng như đơn giản, nhưng mô hình toán học cho nó lại dẫn
đến một phương trình phi tuyến mà các phương pháp đã học ở bậc phổ thông là không
thể cho nghiệm đúng.

Mục tiêu chính của chúng ta trong chương này là các phương pháp số để tính gần
đúng nghiệm của các phương trình phi tuyến như phương trình trên.

2.1 Nghiệm và khoảng tách nghiệm

Mục này, chúng ta tìm hiểu một số khái niệm cơ bản về phương trình và
nghiệm của phương trình, các khoảng tách nghiệm, điều kiện có nghiệm.
Tài liệu tham khảo: T. V. Đĩnh [6, §2.1, §2.2].

2.1.1 Nghiệm của một phương trình

Các phương trình bậc nhất a x + b = 0 xuất hiện trong những tình huống
đơn giản nhất của cuộc sống, trong khi đó, các phương trình bậc hai
a x 2 + b x + c = 0 cũng thường xuất hiện trong khoa học và kĩ thuật như
trong vật lí, hoá học, hay kinh tế, và các khoa học xã hội khác. Như việc
tìm thời gian chạm đất của một vật rơi tự do theo vận tốc và độ cao ban
đầu cũng đưa về một phương trình bâc hai. Phương trình bậc ba có thể
xuất hiện trong các tình huống của vật lí và hoá học như các phương trình
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trạng thái Van der Waal về chất khí. Các phương trình lượng giác thì lại có
thể xuất hiện trong các bài toán liên quan đến hình học, hoặc trong giải
tích Fourier.

Nhìn chung, các phương trình xuất hiện trong khoa học kĩ thuật thường
là phi tuyến và phức tạp hơn nhiều các phương trình xuất hiện trong toán
học ở phổ thông trung học.

Vậy, một cách chặt chẽ toán học thì phương trình là gì? Một phương
trình của một ẩn x có dạng

f (x ) = 0, (2.2)

trong đó, f là hàm của đối số thực x . Một nghiệm của phương trình (2.2) là
một số thực α sao cho khi thay α vào vị trí của x , thì (2.2) nghiệm ra thành
đúng lẽ, tức là

f (α) = 0. (2.3)

Ví dụ 2.1. Số thực α= 2,5 là một nghiệm đúng của phương trình

f (x ) := 2x 3−3x 2−3x −5= 0,

vì chúng ta dễ dàng tính được bằng giấy và bút f (2,5) = 0.

CAS 2.1. Trong CAS này, chúng ta minh hoạ việc tính toán giá trị của hàm
số f (x ) tại một điểm x = a cho trước, sử dụng cú pháp rẽ nhánh “if, else”
để kiểm tra xem giá trị đó có “đủ gần” 0 hay không. Ở đây, “đủ gần” được
đo bằng một giá trị sai số “tol” (tolerance) mà chúng ta xem là chấp nhận
được. Từ đó đưa ra kết luận x = a có phải là nghiệm hay không.

# Định nghĩa hàm f(x) theo công thức đã có
f <- function(x) {

2 * x^3 - 3 * x^2 - 3 * x - 5
}

# Hàm isroot() kiểm tra xem một giá trị có phải
# là nghiệm của hàm f(x) khai báo bên trên hay không
isroot <- function(a) {

# Sai số chấp nhận được
tol <- 1e-9

# Kiểm tra xem |f(a)| có nhỏ hơn sai số tol = 10^(-9)
if (abs(f(a)) < tol) {

# Nếu |f(a)| < tol, thông báo a là nghiệm.
cat(a, "là một nghiệm.\n")

} else {
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# Nếu |f(a) >= tol, thông báo a không là nghiệm.
cat(a, "không phải là nghiệm.\n")
cat("f(", a, ") =", f(a), "\n")

}
}

# Kiểm tra xem giá trị a = 2,500 có phải là nghiệm
a <- 2.500
isroot(a)

## 2,5 là một nghiệm.

# Kiểm tra xem giá trị a = 2,505 có phải là nghiệm
b <- 2.505
isroot(b)

## 2,505 không phải là nghiệm.
## f( 2,505 ) = 0,0978002

Lưu ý, trong CAS trên, thay vì kiểm tra f (a ) = 0, chúng ta kiểm tra
| f (a )|< tol để tránh kết luận sai do sai số làm tròn. Trong đoạn mã R sau
đây, chúng ta tính sin(π) và thu được một kết quả là một số dương rất nhỏ,
do sai số tính toán. Do đó, nếu kiểm tra điều kiện sin(π) = 0, thì chương
trình sẽ cho kết luận sai!

# Gán a = pi
a <- pi

# Kiểm tra xem sin(a) = 0
if (sin(a) == 0) {

cat(a, "là một nghiệm")
} else {

cat(a, "không phải là một nghiệm của sin(x) = 0.")
}

## 3,14159 không phải là một nghiệm của sin(x) = 0.

# In ra giá trị sin(a)
print(sin(a))

## [1] 1,22465e-16

Chương trình cho kết luận sai và cho giá trị sin(π)≈ 10−16!
Nếu α là một nghiệm của (2.2) thì điểm (α,0) trên mặt phẳng O x y sẽ

nằm trên đồ thị của hàm số y = f (x ). Nói cách khác, đồ thị này cắt trục
hoành tại điểm có hoành độ x =α.
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CAS 2.2. Chúng ta xét phương trình f (x ) = x 2−4 sin(x ) = 0 với một khoảng
tách nghiệm là (1, 2). Đoạn mã R sau đây vẽ đồ thì của y = f (x ) trong khoảng
(1/2, 5/2). Hình vẽ thu được thể hiện rõ một nghiệm của phương trình nằm
trong khoảng (1,5; 2) (cùng với nghiệm x = 0).

# Định nghĩa hàm f(x) = x^2 - 4 * sin(x)
f <- function(x) {

x^2 - 4 * sin(x)
}

# Vẽ đồ thị của y = f(x) trên khoảng [-0,5; 2,5]
curve(f(x), from = -0.5, to = 2.5, col = "blue")

# Vẽ đường nằm ngang tại y = 0
abline(h = 0)

−0,5 0,0 0,5 1,0 1,5 2,0 2,5

−
2

0
1

2
3

4

x

f(
x)

Kết quả thu được trên màn hình là đồ thị của hàm số f (x ) = x 2−4 sin(x )
đã cho cùng với đường nằm ngang tại vị trí y = 0, thể hiện rõ việc đồ thị
của f (x ) cắt đường thẳng y = 0 tại hai điểm trong đó một điểm nằm giữa 1
và 2.
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2.1.2 Nghiệm xấp xỉ và khoảng tách nghiệm

Nếu α là một nghiệm của phương trình (2.2) và x ∗ là một số xấp xỉ của α
thì x ∗ gọi là nghiệm xấp xỉ (hoặc nghiệm gần đúng) của phương trình đó.
Khi nghiệm α không tìm được, hoặc khó tìm, thì việc tìm một nghiệm xấp
xỉ có ý nghĩa quan trọng. Hơn nữa, trong thực tế, các tham số của phương
trình cần giải cũng chỉ biết gần đúng (vì chúng có được từ các phép đo đạc,
hoặc từ các tính toán khác) nên việc giải đúng nghiệm của nó cũng không
có ý nghĩa. Việc tìm một nghiệm xấp xỉ của một phương trình gọi là việc
giải gần đúng phương trình đó.

Thông thường, chúng ta giải gần đúng (2.2) qua hai bước:

– Bước giải sơ bộ: Tìm một khoảng chứa nghiệm cần tính và chỉ chứa duy
nhất nghiệm đó, gọi là khoảng tách nghiệm (Định nghĩa 2.1 sau đây).
Trong những hoàn cảnh cụ thể, chúng ta chọn các khoảng tách nghiệm
“bé nhất” có thể.

– Bước giải kiện toàn: Tìm một giá trị gần đúng của nghiệm với độ chính
xác cần thiết và đánh giá sai số của nó.

Trong bước giải sơ bộ, chúng ta có thể sử dụng định lí sau đây mà phát
biểu của nó đã quen thuộc trong toán học ở bậc trung học và trong môn
toán cao cấp (giải tích một biến). Định lí này cho chúng ta một sự đảm bảo
về sự tồn tại nghiệm trong một khoảng trong trường hợp hai giá trị của
hàm số ở vế trái lấy tại hai đầu mút có dấu ngược nhau.

Định lí 2.1: Bolzano–Cauchy

Giả sử f (x ) là một hàm liên tục trên một đoạn [a , b ]. Nếu

f (a ) f (b )< 0,

thì tồn tại một nghiệm α trong khoảng (a , b ) của phương trình (2.2).

Định lí 2.1 được Bolzano1 và Cauchy2 chứng minh độc lập vào đầu thế
kỉ 19. Bạn đọc quan tâm có thể tìm đọc chứng minh định lí này và các hệ
quả của nó các giáo trình giải tích bậc đại học như N. V. Khuê–L. M. Hải–N.
Đ. Sang [8, Chương I, §6].

Ví dụ 2.2. Phương trình x = cos(x ) có thể viết lại dưới dạng tương đương

x − cos(x ) = 0.

1Bernhard Bolzano (1781-1848) là một nhà toán học người Bohemian.
2Augustin-Louis Cauchy (21/8/1789–23/5/1857) là một nhà toán học người Pháp.
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Hàm số f (x ) = x − cos(x ) là hàm liên tục trên R. Hơn nữa, f (0) = 0− cos(0) =
−1< 0, trong khi đó f (1) = 1− cos(1)> 0.

Bởi định lí Bolzano–Cauchy, tồn tại ít nhất một nghiệm α ∈ (0,1) thoả
mãn α= cos(α).

Định nghĩa 2.1: Khoảng tách nghiệm

Khoảng [a , b ] được gọi là khoảng tách nghiệm của phương trình
(2.2) nếu phương trình có một và chỉ một nghiệm trên khoảng đó.

Trong các giáo trình khác nhau, khoảng tách nghiệm còn được gọi là
“khoảng phân li nghiệm” hoặc “khoảng cách li nghiệm”.

Hàm đơn điệu và tính duy nhất nghiệm

Nhắc lại rằng một hàm số f (x ) là đơn điệu tăng trên một khoảng [a , b ] nếu
mệnh đề sau là đúng với mọi cặp x1, x2 thuộc [a , b ]:

x1 < x2 =⇒ f (x1)< f (x2).

Tương tự, hàm số f được gọi là hàm đơn điệu giảm trên [a , b ] nếu mệnh
đề sau là đúng với mọi cặp x1, x2 thuộc [a , b ]:

x1 < x2 =⇒ f (x1)> f (x2).

Các hàm đơn điệu tăng và đơn điệu giảm được gọi chung là hàm đơn điệu.

Một phương pháp đơn giản để xét tính đơn điệu của các hàm số khả vi
là xét dấu của đạo hàm của nó. Cụ thể được nêu trong định lí sau đây.

Định lí 2.2:

Giả sử f (x ) là một hàm khả vi trên đoạn [a , b ] với đạo hàm f ′(x ).
Nếu f ′(x )> 0 trên [a , b ] thì f là hàm đơn điệu tăng trên [a , b ]. Nếu
f ′(x )< 0 trên [a , b ] thì f là hàm đơn điệu giảm trên [a , b ].

Đây là một kết quả quen thuộc của giải tích, là cơ sở của các bài toán
khảo sát hàm số trong môn toán ở giáo dục phổ thông. Người đọc có thể
xem chứng minh chi tiết trong rất nhiều giáo trình toán cao cấp khác nhau
về giải tích, ví dụ N. V. Khuê–L. M. Hải–N. Đ. Sang [8].
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Định lí 2.3: Giá trị trung gian

Giả sử f (x ) là một hàm khả vi trên đoạn [a , b ] với đạo hàm f ′(x )
không đổi dấu, tức là f ′(x ) > 0 với mọi x ∈ (a , b ) hoặc f ′(x ) < 0 với
mọi x ∈ (a , b ). Nếu f (a ) và f (b ) trái dấu thì [a , b ] là một khoảng tách
nghiệm của phương trình f (x ) = 0.

Ví dụ 2.3. Xét hàm số

f (x ) = x 3− x −3, x ∈ [1, 2].

Hàm số f (x ) khả vi với
f ′(x ) = 3x 2−1.

Rõ ràng, f ′(x ) > 0 trên [1,2], f (1) = −3, và f (2) = 3. Vậy, f (x ) đơn điệu tăng
trên [a , b ], hai giá trị f (1) và f (2) trái dấu nên theo Định lí 2.2, khoảng [1, 2]
là một khoảng tách nghiệm của phương trình f (x ) = x 3− x −3= 0.

Giả sử f (x ) có nghiệm duy nhất α trên [a , b ], tức là f (α) = 0. Giả sử bằng
một phương pháp nào đó chúng ta tìm được x̃ ∈ [a , b ] là một xấp xỉ của α.
Vấn đề đặt ra là đánh giá sai số của phép xấp xỉ x̃ ≈α. Một câu trả lời cho
vấn đề này như sau:

Định lí 2.4: Ước lượng sai số

Giả sử f (x ) là hàm khả vi trên [a , b ] và đạo hàm của f thỏa mãn

| f ′(x )| ≥m > 0, x ∈ [a , b ],

với m là một hằng số dương. Giả sử α ∈ (a , b ) là một nghiệm của
phương trình f (x ) = 0 và x̃ ∈ (a , b ) là một số xấp xỉ của α. Khi đó

|x̃ −α| ≤
| f (x̃ )|

m
.

Chứng minh. Giả sử x̃ ̸=α. Theo định lí Lagrange, tồn tại c nằm giữa x̃ và
α sao cho

f (x̃ )− f (α)
x̃ −α

= f ′(c ).

Thay f (α) = 0 và lấy giá trị tuyệt đối hai vế, ta có
�

�

�

�

f (x̃ )
x̃ −α

�

�

�

�

= | f ′(c )| ≥m .

Từ đây ta dễ dàng suy ra điều phải chứng minh.

32



2.2. PHƯƠNG PHÁP CHIA ĐÔI

Ví dụ sau đây minh hoạ cách áp dụng định lí trên để đánh giá sai số cho
một nghiệm gần đúng.

Ví dụ 2.4. Xét phương trình f (x ) = x 3−x−3= 0 có một khoảng tách nghiệm
là [1,2]. Giả sử x̂ = 1,67 là một nghiệm gần đúng. Tìm sai số tương đối của
nó.

Lời giải

Bởi vì f ′(x ) = 3x 2−1 nên với mọi x ∈ [1, 2], ta có

| f ′(x )| ≥ f ′(x )≥ 3×12−1= 2.

Do đó, chúng ta lấy m = 2.
Với x̂ = 1,67, ta dễ dàng tính được

| f (x̂ )|= |1,673−1,67−3|= 0,012537.

Từ đó, nếu α là nghiệm đúng của phương trình trong [1, 2] thì

|x̂ −α| ≤
| f (x̂ )|

m
=

0,012537
2

= 0,006268.

Như vậy, nếu x̂ = 1,67 là một nghiệm gần đúng thì nó có sai số tuyệt đối
∆x̂ = 0,006268, trong khi đó, sai số tương đối của nó là

δx̂ =
∆x̂

x̂ −∆x̂
≈ 0,0038.

Như vậy, nghiệm gần đúng x̂ = 1,67 có sai số tương đối khá nhỏ, khoảng
0,38%.

2.2 Phương pháp chia đôi

Giả sử phương trình f (x ) = 0 có nghiệm duy nhất x = α trong khoảng
tách nghiệm [a , b ] với f (a ) f (b )< 0. Trong phương pháp chia đôi (bisection
method) chúng ta bắt đầu bằng việc đặt

a1 = a , b1 = b , m1 =
a1+ b1

2
.

Khi đó, điểm m1 chia khoảng [a1, b1] = [a , b ] làm hai khoảng có độ dài bằng
một nửa khoảng tách nghiệm ban đầu. Tính giá trị f (m1) và tuỳ theo kết
quả thu được mà thực hiện bước tiếp theo. Cụ thể như sau:

• Nếu f (m1) = 0 thì nghiệm α=m1.
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• Nếu f (m1) ̸= 0, thì f (m1) cùng dấu với f (a1) hoặc f (b1). Khi đó, xét hai
trường hợp con sau:

– Nếu f (m1) và f (a1) cùng dấu, thì f (m1) và f (b1) trái dấu và [m1, b1]
là một khoảng tách nghiệm của mới phương trình. Khi đó, chúng
ta đặt a2 =m1 và b2 = b1.

– Nếu f (m1) và f (b1) cùng dấu, thì f (m1) và f (a1) trái dấu và [a1, m1]
là một khoảng tách nghiệm mới của phương trình. Khi đó, chúng
ta đặt a2 = a1 và b2 =m1.

Như vậy, trong mọi trường hợp thì chúng ta xác định được một khoảng
tách nghiệm mới với độ dài bằng một nửa khoảng tách nghiệm ban đầu:

b2−a2 =
b1−a1

2
.

Lặp lại quá trình trên, chúng ta thu được các khoảng tách nghiệm [a3, b3],
. . . , [ak , bk ], . . . , với

bk −ak =
b1−a1

2k−1
.

Khi đó, chúng ta có thể lấy mk = (ak + bk )/2 là giá trị gần đúng của nghiệm
α, với sai số

|mk −α| ≤
b1−a1

2k
.

CAS 2.3. Chúng ta hãy viết một chương trình R tính gần đúng nghiệm
của phương trình phi tuyến bằng phương pháp chia đôi và áp dụng cho
phương trình x 4 − 3x + 1 = 0 trên khoảng tách nghiệm (1,2). Chi tiết như
sau:

# bisection_method() tìm nghiệm của một phương trình phi tuyến.
# Yêu cầu: (a, b) là một khoảng tách nghiệm với f(a)f(b) < 0.

bisection_method <- function(f, a, b, tol = 1e-6, m = 1000) {

# Khởi tạo các giá trị ban đầu
i <- 0
fa <- f(a)
fb <- f(b)

# Vòng lặp chính
while (abs(b - a) > tol && i < m) {

c = (a + b) / 2
fc <- f(c)

# Kiểm tra f(c) và f(a) trái dấu và rẽ nhánh
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if (sign(fc) * sign(fa) < 0) {
b <- c
fb <- fc
i <- i + 1

} else if (sign(fc) * sign(fb) < 0) {
a <- c
fa <- fc
i <- i + 1

} else {
b <- c
a <- c
i <- i + 1

}
}

# Kết thúc vòng lặp khi |a - b| < tol hoặc i >= m
c = (a + b) / 2

# Hàm trả về nghiệm xấp xỉ c và số vòng lặp i
return(list(root = c, iter = i))

}

# Áp dụng bisection_method() cho x^4 - 3 * x + 1 = 0.

options(digits = 8)
f <- function(x) x^4 - 3 * x + 1
bisection_method(f, 1, 2, 1e-6)

## $root
## [1] 1,3074861
##
## $iter
## [1] 20

Nếu α là nghiệm đúng của phương trình thì hàm bisection_method()
như trên cho ra một giá trị x ∗ thoả mãn |x ∗−α|< tol hoặc f (x ∗) = 0. Kết quả
chạy máy tính cho nghiệm gần đúng sau 20 bước lặp.

CAS 2.4. Phương pháp chia đôi được lập sẵn trong chức năng bisect()
của gói pracma của phần mềm R. Ví dụ,

library(pracma)
f <- function(x) x^4 - 3 * x + 1
bisect(f, 1, 2, 20)

## $root
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## [1] 1,3074865
##
## $f.root
## [1] 2,5732532e-06
##
## $iter
## [1] 20
##
## $estim.prec
## [1] 1,9073486e-06

Kết quả thu được từ bisect() của gói pracma với 20 bước lặp phù hợp
với kết quả của chương trình R trong CAS 2.3 với sai số được yêu cầu là
tol< 10−6.

2.3 Phương pháp lặp đơn

Nội dung chính của mục này là phương pháp lặp đơn, còn gọi là phương
pháp lặp điểm bất động. Tài liệu tham khảo: T. V. Đĩnh [6, §2.3], P. K. Anh
[2, §VII.2], Kreyszig [9, §19.2].

Giả sử phương trình (2.2) có một nghiệm α trong khoảng tách nghiệm
[a , b ]. Phương pháp lặp đơn nói chung bắt đầu bằng việc chuyển (2.2) về
dạng

x =φ(x ), (2.4)

sao cho (2.4) tương đương với (2.2) trong [a , b ], có nghĩa là (2.4) cũng có
[a , b ] là khoảng tách nghiệm với nghiệm α. Như vậy, bài toán tìm nghiệm
của phương trình f (x ) = 0 quy về bài toán tìm “điểm bất động” của hàm
số φ.

Chọn một xấp xỉ đầu tiên x0 ∈ [a , b ] và xây dựng dãy lặp theo công thức
truy hồi

xn =φ(xn−1), n = 1, 2, . . . (2.5)

Với một số điều kiện nhất định, giá trị xn , khi n “đủ lớn” cho một giá trị
gần đúng của nghiệm α với sai số “đủ nhỏ”. Phương pháp lặp sử dụng công
thức truy hồi (2.5) gọi là phương pháp lặp đơn, vì các bước lặp sử dụng
cùng một công thức truy hồi.

2.3.1 Sự hội tụ

Định nghĩa 2.2:

Nếu dãy {xn}n≥0 xác định bởi (2.5) hội tụ tới nghiệm α của (2.4) khi
n→∞ thì ta nói phương pháp lặp đơn (2.5) hội tụ.
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Nếu phương pháp lặp hội tụ thì, với một sai số cho phép ε> 0 cho trước,
khi lấy n “đủ lớn”, ta có α≈ xn với sai số tuyệt đối giới hạn không vượt quá
ε. Ngược lại, nếu quá trình lặp không hội tụ, thì các giá trị xn không có ý
nghĩa trong bài toán tính gần đúng nghiệm.

Định lí sau đây cho các điều kiện đủ để có được sự hội tụ trong phương
pháp lặp đơn.

Định lí 2.5: Định lí hội tụ

Giả sử phương trình (2.4) có một nghiệm α trong [a , b ] và hàm số φ
có đạo hàm thỏa mãn hai điều kiện sau:

(i) Với mọi x ∈ [a , b ], φ(x ) ∈ [a , b ].

(ii) |φ′(x )| ≤ q < 1 với mọi x ∈ [a , b ].

Khi đó, xn hội tụ tới α:
lim

n→∞
xn =α.

Định lí 2.5 là một hệ quả của định lí điểm bất động Banach3. Vì vậy,
phương pháp lặp đơn dựa trên định lí này thường được gọi là phương pháp
lặp điểm bất động. Trước khi chứng minh định lí trên, chúng ta tìm hiểu ví
dụ cụ thể sau đây.

Ví dụ 2.5. Xét phương trình

f (x ) = x 3− x −1= 0. (2.6)

Biết nó có một nghiệm α phân li trong đoạn [1,2]. Bằng phương pháp lặp
đơn, hãy tính gần đúng α với sai số không vượt quá 0,5×10−4.

Lời giải

Đưa phương trình đã cho về dạng phương trình điểm bất động x =φ(x ),
bắt đầu bằng biến đổi nó về dạng

x 3 = x +1.

Tiếp theo, chia hai vế cho x ,

x 2 = 1+
1

x
.

Lấy căn bậc hai hai vế,

x =

√

√

1+
1

x
︸ ︷︷ ︸

φ(x )

.

3Stefan Banach (30/3/1892 – 31/8/1945) là một nhà toán học người Ba Lan.

37



CHƯƠNG 2. TÍNH GẦN ĐÚNG NGHIỆM CỦA MỘT PHƯƠNG TRÌNH

Dễ thấy các phép biến đổi trên là tương đương trên [1,2]. Như vậy, chúng
ta đã đưa phương trình đã cho về dạng x =φ(x ) với

φ(x ) =

√

√

1+
1

x
.

Nếu x ∈ [1, 2] thì 0,5≤ 1
x ≤ 1. Do đó,

p

1,5≤φ(x )≤
p

2.

Từ đó suy ra φ(x ) ∈ [1,2]. Như vậy, hàm φ(x ) thỏa mãn điều kiện (i) của
Định lí 2.5.

Mặt khác, lấy đạo hàm của φ(x ), ta có

φ′(x ) =
−1

2x
p

x +1
.

Với x ∈ [1, 2] thì 2x
p

x +1≥ 2×1×
p

1+1= 2
p

2. Từ đó, chúng ta suy ra

|φ′(x )|=
1

2x
p

x +1
≤

1

2
p

2
< 1.

Vậy, hàm φ(x ) thỏa mãn điều kiện (ii) trên [1, 2] với q =
1

2
p

2
.

Tóm lại, φ(x ) thỏa mãn cả hai điều kiện của Định lí 2.5: Phương pháp
lặp đơn hội tụ với mọi cách chọn x0 ∈ [1, 2].

Để đơn giản, ta chọn x0 = 1,5 và thiết lập dãy







x0 = 1,5,

xi+1 =

√

√

1+
1

xi
.

Hãy tính các xấp xỉ xi . Tại mỗi bước, ta quy tròn kết quả với 4 chữ số sau
dấu thập phân, và thay vào bước tiếp theo. Kết quả được ghi trong bảng
sau:

i xi | f (xi )| |xi − xi−1|

0 1,5000 0,8750 -
1 1,2910 0,1393 0,2090
2 1,3321 0,0317 0,0411
3 1,3231 0,0069 0,0090
4 1,3251 0,0016 0,0020
5 1,3246 0,0005 0,0005
6 1,3247 7,658 ·10−5 0,0001
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Chú ý rằng, với x6 = 1,3247, giá trị | f (x6)| rất nhỏ. Ta lấy α≈ x6 và đánh
giá sai số như sau: Với f (x ) = x 3− x −1, chúng ta có

f ′(x ) = 3x 2−1.

Từ đó suy ra | f ′(x )|⩾ 2 khi x ∈ [1, 2]. Như vậy,

|x6−α| ≤
| f (x6)|

2
≤ 3,829 ·10−5.

Vậy, x6 là một xấp xỉ thỏa mãn yêu cầu, có nghĩa là α≈ x6 = 1,3247.

Chú ý 2.1. Có nhiều cách đưa một phương trình dạng f (x ) = 0 về dạng
x =φ(x ). Chẳng hạn, chúng ta có thể đưa (2.6) về dạng

x =
3
p

x +1,

tức là dạng x =φ(x ) với φ(x ) = 3px +1. Khi đó,
3p

2≤φ(x )≤ 3p
3 ∀x ∈ [1, 2].

Hơn nữa,

φ′(x ) =
1

3
(x +1)−2/3,

nên

|φ′(x )| ≤
1

3 3p4
< 1.

Do đó, với cách chọn hàm φ như vậy, phương pháp lặp đơn như trên cũng
hội tụ với mọi xấp xỉ đầu x0 ∈ [1, 2].

Phần tiếp theo, chúng ta chứng minh Định lí 2.5.

Mệnh đề 2.1:

Giả sử φ là hàm số thỏa mãn điều kiện trong định lí 2.5. Khi đó, với
mọi x , y ∈ [a , b ],

|φ(x )−φ(y )| ≤ q |x − y |.

Chứng minh. Nếu x = y thì đẳng thức trên là rõ ràng. Nếu y ≠ x , không
mất tổng quát, ta giả sử y < x . Theo định lí Lagrange (xem N. V. Khuê–L.
M. Hải–N. Đ. Sang [8, Chương II, §2]), tồn tại z ∈ [y , x ] sao cho

φ′(z ) =
φ(y )−φ(x )

y − x
.

Vậy
|φ(x )−φ(y )|= |φ′(z )| · |x − y | ≤ q |x − y |

vì |φ′(z )| ≤ q . Ta có điều phải chứng minh.
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Chứng minh Định lí 2.5. Để chứng minh xn hội tụ tới α, chúng ta sẽ chứng
minh

|xn −α| ≤ q n |x0−α|. (2.7)

Rõ ràng, bất đẳng thức (2.7) đúng với n = 0. Giả sử nó đúng với n = k , tức là

|xk −α| ≤ q k |x0−α|. (2.8)

Vì α=φ(α) và xk+1 =φ(xk ) nên, áp dụng Định lí 2.1 và giả thiết quy nạp, ta
có

|xk+1−α|= |φ(xk )−φ(α)|
≤ q |xk −α|

≤ q (q k |x0−α|)

= q k+1|x0−α|.

Vậy, (2.7) đúng với n = k +1. Theo nguyên lí quy nạp, nó phải đúng với mọi
n ≥ 0.

Chú ý rằng 0< q < 1 nên q n hội tụ về 0 khi n→∞. Áp dụng định lí giới
hạn bị kẹp (N. V. Khuê–L. M. Hải–N. Đ. Sang [8, Chương I, §4.5]) vào bất
đẳng thức (2.7), ta có |xn −α| → 0 hay xn →α khi n→∞. Ta kết thúc chứng
minh.

Nhận xét 2.1. Trong Định lí 2.5, chúng ta có thể thay giả thiết (i), điều kiện
φ(x ) ∈ [a , b ] với mọi x ∈ [a , b ], bởi điều kiện xn ∈ [a , b ] với mọi n . Mặt khác,
ví dụ sau đây cho thấy điều kiện này là cần thiết.

Ví dụ 2.6. Xét hàm sốφ(x ) = 1−
p

x . Phương trình x =φ(x ) có dạng phương
trình bậc hai của

p
x :

x +
p

x −1= 0. (2.9)

Khi đó, t =
p

x phải là nghiệm dương của phương trình

t 2+ t −1= 0,

tức là t = 1
2 (−1+

p
5), và vậy thì

x =

�

−1+
p

5

2

�2

=
3−
p

5

2
≈ 0,382.

Gọi nghiệm này là α thì rõ ràng α ∈ [1/3, 1] và nó là một khoảng tách nghiệm
của phương trình (2.9).

Mặt khác, bởi vì

φ′(x ) =−
1

2
p

x
,

nêu chúng ta có đánh giá

|φ′(x )| ≤
p

3

2
< 1, ∀x ≥ 1/3.
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Có nghĩa là φ thỏa mãn điều kiện (i) của Định lí 2.5 với q =
p

3
2 .

Bây giờ, chúng ta xem xét hai cách chọn xấp xỉ đầu x0 khác nhau và
chúng cho các kết quả khác nhau:

• Chọn x0 = 1 và xác định dãy xn =φ(xn−1) thì chúng ta có x1 =φ(1) = 0.
Vậy thì x1 nằm ngoài khoảng tách nghiệm. Tiếp tục tính, ta có x2 =
φ(x1) =φ(0) = 1, . . . . Một cách tổng quát, chúng ta tính được

xn =

�

0, nếu n lẻ,

1, nếu n chẵn.

Rõ ràng, dãy xn không hội tụ: Dãy lặp xn không cho ta một xấp xỉ đủ
tốt của nghiệm của phương trình ban đầu. Trong trường hợp này, quá
trình tính xn là một ví dụ về quá trình tính không ổn định.

• Chọn x0 = 1/3 và xác định xn =φ(xn−1) thì ta được x1 =
1
3 (3−

p
3), . . . Có

thể chứng minh được dãy này luôn nằm trong [1/3, 1] và do đó nó hội
tụ tới α.

Lưu ý, bạn đọc có thể kiểm tra quá trình lặp đơn trên hội tụ với mọi cách
chọn x0 ∈ (0, 1).

Về cách chọn xấp xỉ đầu tiên

Từ Ví dụ 2.6, nảy sinh vấn đề chọn giá trị xấp xỉ ban đầu x0 phù hợp sao
cho dãy lặp xn hội tụ.

Giả sử ta đã có điều kiện (ii) của Định lí 2.5, |φ′(x )| ≤ q < 1 trên [a , b ].
Khi đó, chúng ta chọn xấp xỉ đầu tiên dựa theo các nguyên tắc sau:

• Trường hợp 1: Nếu φ′(x )> 0 với mọi x ∈ [a , b ]. Khi đó, ta chọn x0 tùy
ý. Nếu a ≤ x0 <α thì dãy lặp tăng và hội tụ tới α, còn nếu α< x0 < b thì
dãy lặp giảm và hội tụ tới α.

• Trường hợp 2: Nếu φ′(x ) < 0, hoặc đổi dấu trên x ∈ [a , b ]. Khi đó, ta
cần chọn x0 sao cho x0 gần α hơn so với hai đầu mút a , b , có nghĩa là

|x0−α| ≤min{|a −α|, |b −α|}. (2.10)

Nói riêng, nếuα< (a+b )/2 thì ta có thể chọn x0 = a , còn nếu (a+b )/2<
α thì ta có thể chọn x0 = b . Trong mọi trường hợp, dãy xn “dao động”
xung quanh và hội tụ về α.
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2.3.2 Đánh giá sai số

Giả sử phương trình (2.2) hoặc (2.4) có nghiệm duy nhất α trong khoảng
tách nghiệm [a , b ] và dãy các xấp xỉ xn xác định bởi (2.5) thỏa mãn xn →α.
Câu hỏi đặt ra là với giá trị n lớn bao nhiêu thì chúng ta đạt được sai số bé
như mong muốn. Nói cụ thể hơn, giả sử chúng ta muốn sai số tuyệt đối
|xn −α|<ε với ε cho trước, thì cần tính đến bước lặp thứ mấy?

Để trả lời câu hỏi này, chúng ta cần tìm một sai số tuyệt đối giới hạn
của xn (phụ thuộc vào n). Từ bất đẳng thức (2.7), ta thu được

|xn −α|< q n |x0−α|< q n |b −a |.
Như vậy nếu chọn n sao cho q n |b −a |<ε, hay

n >
ln(ε/(b −a ))

ln q
, (2.11)

thì giá trị xn là một xấp xỉ của nghiệm α với sai số tuyệt đối không lớn hơn
ε. Tuy nhiên, trong thực hành, giá trị n thoả mãn (2.11) như trên thường
quá lớn.

Thay vì đánh giá sai số |xn −α| theo a , b và q , chúng ta có thể đánh giá
nó qua xn và xn−1. Chúng ta bắt đầu với

|xn −α| ≤ q |xn−1−α|
≤ q |xn−1− xn + xn −α|
≤ q (|xn−1− xn |+ |xn −α|) .

Từ đó suy ra
(1−q )|xn −α| ≤ q |xn−1− xn |.

Vì 1−q > 0 nên ta chia hai vế của bất đẳng thức cho 1−q và thu được công
thức đánh giá sai số thứ nhất :

|xn −α| ≤
q

1−q
|xn−1− xn |. (2.12)

Nhận xét 2.2. Bằng cách áp dụng Định lí 2.4 cho hàm f (x ) = x −φ(x ),
chúng ta cũng có thể thu được công thức đánh giá sai số thứ nhất. Thật
vậy, ta có

| f ′(x )|= |1−φ′(x )| ≥ 1− |φ′(x )| ≥ 1−q .

Vậy, ta chọn m = 1−q > 0 thì | f ′(x )| ≥m với mọi x ∈ [a , b ]. Theo định lí trên

|xn −α| ≤
| f (xn )|

m
=
|xn −φ(xn )|

1−q

=
|φ(xn−1)−φ(xn )|

1−q

≤
q |xn−1− xn |

1−q
.
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Đó chính là công thức đánh giá sai số thứ nhất.

2.3.3 Tóm tắt phương pháp lặp đơn

Phương pháp lặp đơn được thực hiện qua các bước sau:

1. Cho phương trình f (x ) = 0,

2. Ấn định sai số cho phép ε,

3. Tìm khoảng tách nghiệm [a , b ],

4. Tìm hàm lặp hội tụ φ(x ) thoả mãn điều kiện hội tụ,

5. Chọn xấp xỉ đầu x0,

6. Thực hiện quá trình lặp

xn =φ(xn−1),

cho đến khi một trong các điều kiện dừng thỏa mãn,

7. Kết quả α≈ xn .

CAS 2.5. Từ tóm tắt trên, dễ dàng xây dựng một chương trình máy tính
để thực hiện phương pháp lặp đơn. Dưới đây là một đoạn mã R minh hoạ
cách dùng vòng lặp “for” trong hàm simple_iteration() thực hiện quá
trình lặp đơn với hàm lặp phi và bắt đầu tại start. Đoạn mã sẽ giúp thực
hiện các tính toán trong Ví dụ 2.5 một cách nhanh chóng.

# Hàm simple_iteration() nhận giá trị đầu x0, hàm lặp (phi),
# sai số chấp nhận (tol) và số lần lặp tối đa (m)
simple_iteration <- function(x0, phi, tol = 1e-6, m = 100)
{

# Giá trị xấp xỉ đầu
x <- x0

# Vòng lặp chính
for (i in 1:m) {

x1 <- phi(x)
if (abs(x1 - x) < tol) {

cat("Kết quả sau",i,"bước:", x1,"\n")
break

}
x <- x1

}
return(x)
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}

# Chạy thử simple_iteration() cho hàm phi(x) = sqrt(1 + 1/x).
phi <- function(x) sqrt(1 + 1 / x)

# Giá trị đầu x0 = 1,5
x0 <- 1.5

# Nghiệp xấp xỉ tính bằng simple_iteration()
solution <- simple_iteration(x0, phi)

## Kết quả sau 9 bước: 1,3247178

2.4 Phương pháp Newton–Raphson

Mục này nói về một phương pháp mang tên nhà khoa học Issac Newton và
nhà toán học Joseph Raphson4 để xấp xỉ nghiệm của một phương trình phi
tuyến. Tài liệu tham khảo: T. V. Đĩnh [6, §2.4], P. K. Anh [2, §VII.4], Kreyszig
[9, §19.2].

2.4.1 Mô tả phương pháp Newton–Raphson

Cũng như phương pháp lặp đơn, phương pháp Newton–Raphson xây dựng
một dãy x0, x1, x2 . . . , theo một công thức truy hồi để xấp xỉ nghiệm của
một phương trình dạng (2.2). Phương pháp này bắt đầu bằng việc thay thế
phương trình ban đầu (2.2), thường là phương trình phi tuyến, bằng một
phương trình xấp xỉ có dạng tuyến tính.

Nhắc lại rằng, nếu hàm số f (x ) là hàm khả vi tại x0 thì

f ′(x0) = lim
x→x0

f (x )− f (x0)
x − x0

.

Do đó, nếu chúng ta đặt

L x0
(x ) = f (x0) + f ′(x0)(x − x0),

thì có thể khai triển f (x ) như sau:

f (x ) = L x0
(x ) +h (x ) (2.13)

với h (x ) thỏa mãn

lim
x→x0

h (x )
x − x0

= 0.

4Joseph Raphson (khoảng 1668 – 1715) là một nhà toán học người Anh.
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Công thức (2.13) là trường hợp riêng của khai triển Taylor của hàm f tại
điểm x0 và L x0

gọi là xấp xỉ tuyến tính của f tại x0.
Xét phương trình “xấp xỉ” tuyến tính

L x0
(x ) = 0

của phương trình (2.2) tại x0. Với điều kiện f ′(x0) ̸= 0, nó có nghiệm

x1 = x0−
f (x0)
f ′(x0)

.

Tiếp theo, xét phương trình tuyến tính hóa tại x1, phương trình L x1
(x ) = 0.

Dễ thấy nếu f ′(x1) ̸= 0 thì nghiệm của nó là

x2 = x1−
f (x1)
f ′(x1)

.

Lặp lại quá trình này, ta thu được một dãy x0, x1, x2, . . ..
Tóm lại, chúng ta thu được dãy {xn} xác định bởi hai phương trình







x0 cho trước,

xn+1 = xn −
f (xn )
f ′(xn )

,
(2.14)

gọi là quá trình Newton bắt đầu từ x0.

Nhận xét 2.3. Nếu f ′(x ) ̸= 0 trên [a , b ] thì hàm số

φ(x ) := x −
f (x )
f ′(x )

xác định trên [a , b ]. Khi đó, phương trình f (x ) = 0 tương đương với x =φ(x ).
Vì vậy, phương pháp Newton có thể xem là một trường hợp đặc biệt của
phương pháp lặp mà chúng ta đã tìm hiểu trong mục trước.

2.4.2 Sự hội tụ

Phương pháp Newton–Raphson có ý nghĩa khi dãy xn hội tụ tới nghiệm α
của phương trình f (x ) = 0 đang xét. Sự hội tụ này có được trong trường hợp
tổng quát khi một số điều kiện được thỏa mãn. Ví dụ, sự hội tụ có được khi
f khả vi liên tục đến cấp 2, f ′(α) ̸= 0, và xấp xỉ ban đầu x0 chọn “đủ gần” α
(Định lí 2.7). Tuy nhiên, kết quả này chỉ mang ý nghĩa lí thuyết, vì nó không
nêu rõ chọn x0 thế nào là đủ gần α. Trong thực hành, việc chọn x0 như nào
để dãy xn xây dựng bởi thuật toán Newton–Raphson hội tụ tới nghiệm cần
tìm, ta dựa trên kết quả sau đây.
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Định lí 2.6: Newton–Raphson

Giả sử [a , b ] là một khoảng tách nghiệm của phương trình f (x ) = 0,
hàm f (x ) có đạo hàm tới cấp 2 với f ′ và f ′′ không đổi dấu trên (a , b ).
Giả sử x0 là a hoặc b sao cho f (x0) cùng dấu với f ′′(x0). Khi đó, dãy
xn xác định bởi (2.14) hội tụ tới nghiệm α khi n →∞. Cụ thể hơn,
xn là dãy đơn điệu tăng tới α nếu f ′ và f ′′ trái dấu và xn là dãy đơn
điệu giảm tới α nếu f ′ và f ′′ cùng dấu.

Chú ý 2.2. Điểm x0 thỏa mãn điều kiện “ f (x0) và f ′′(x0) cùng dấu”, tức là

f (x0) f
′′(x0)> 0,

thường được gọi là điểm Fourier5.

Chứng minh Định lí 2.6. Vì f ′ và f ′′ giữ nguyên dấu trên khoảng đang xét,
nên ta có thể chia làm 4 trường hợp tùy theo dấu của chúng. Tuy nhiên, ta
sẽ chỉ trình bày chứng minh chi tiết trong trường hợp f ′ > 0 và f ′′ < 0 trên
[a , b ], vì 3 trường hợp còn lại có thể được chứng minh tương tự.

Với giả thiết như vậy, f (x ) là hàm tăng trên [a , b ] nên f (x )< 0 trên [a ,α)
và f (x )> 0 trên (α, b ]. Như vậy, x0 thỏa mãn điều kiện Fourier nếu và chỉ
nếu f (x0)< 0, tức là x0 <α.

Xét hàm số

φ(x ) = x −
f (x )
f ′(x )

.

Khi đó, công thức lặp Newton–Raphson viết gọn là

xn =φ(xn−1), n = 1, 2, . . . .

Ta sẽ chứng minh
x <φ(x )<α (2.15)

với mọi x ∈ [a ,α). Thật vậy, với x ∈ [a ,α) ta có f (x )< 0 và f ′(x )> 0 nên, theo
định nghĩa củaφ, ta cóφ(x )> x . Bất đẳng thức thứ nhất được chứng minh.

Mặt khác, bằng tính toán trực tiếp,

φ′(x ) =
�

x −
f (x )
f ′(x )

�′

= 1−
( f ′(x ))2− f (x ) f ′′(x )

( f ′(x ))2

=
f (x ) f ′′(x )
( f ′(x ))2

> 0,

5Jean-Baptiste Joseph Fourier (1768–1830) là một nhà toán học người Pháp.
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với mọi x ∈ [a ,α), theo giả thiết về dấu của các đạo hàm của f . Từ đó, theo
định lí giá trị trung bình,

φ(x )−φ(α) = (x −α)φ′(c )< 0,

do x <α. Vậy,

φ(x )<φ(α) =α−
f (α)
f ′(α)

=α,

do f (α) = 0. Từ đó, các bất đẳng thức trong (2.15) được chứng minh.
Bây giờ, áp dụng (2.15), chúng ta có x0 <φ(x0) = x1 <α. Bằng quy nạp,

ta suy ra
x0 < x1 < · · ·< xn < xn+1 < · · ·<α.

Vậy, dãy {xn} là dãy tăng ngặt và bị chặn trên bởi α nên nó hội tụ. Gọi ℓ là
giới hạn của nó thì

ℓ= lim
n→∞

xn = lim
n→∞

φ(xn−1) =φ
�

lim
n→∞

xn

�

=φ(ℓ),

có nghĩa là ℓ là nghiệm của phương trình x = φ(x ), cũng là nghiệm của
phương trình f (x ) = 0 trong [a ,α]. Do đó, bắt buộc ℓ = α và chúng ta kết
thúc chứng minh.

Một trong những nhược điểm của phương pháp Newton–Raphson là
cần phải tính không chỉ f (x )mà cả đạo hàm f ′(x ). Tuy nhiên, có những
tình huống mà điều này lại giúp cho chúng ta đơn giản hóa việc tính toán,
như trong hai ví dụ kinh điển sau đây:

Ví dụ 2.7. Cho a > 0. Xét phương trình

f (x ) := a −
1

x
= 0. (2.16)

Nó có nghiệm đúng duy nhất là x = 1/a .
Nếu biết một biểu diễn thập phân của a , thì chúng ta có thể tính 1/a

bằng cách thực hiện phép chia trong hệ thập phân.
Mặt khác, f ′(x ) = 1

x 2 > 0 và f ′′(x ) = −2x−3 < 0 (với x ̸= 0), nên ta có thể
dùng công thức truy hồi Newton–Raphson

xk+1 = 2xk −a x 2
k , (2.17)

để thu được một dãy hội tụ tới 1/a , miễn là x0 thỏa mãn điều kiện Fourier.
Trong trường hợp này, x0 phải thỏa mãn f (x0)< 0 hay

x0 <
1

a
.

Một điều thú vị nên lưu ý trong công thức truy hồi (2.17), chúng ta chỉ cần
thực hiện phép cộng và nhân mà không cần đến phép chia. Nói cách khác,
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chúng ta đã đơn giản hóa quá trình tính toán (thay phép chia bằng phép
cộng và phép nhân), với một cái giá cần đánh đổi là kết quả thu được chỉ
là gần đúng. Tuy nhiên, trong một số trường hợp, chúng ta cũng không thể
biểu diễn giá trị đúng của phép chia 1/a , ví dụ như 1/7, vì kết quả của nó là
một số thập phân vô hạn.

Để lấy ví dụ, xét a = 7 và chọn x0 = 0,1. Khi đó, có thể dễ dàng tính bằng
tay như sau:

x1 = 2 ·0,1−7 · (0,1)2 = 0,2−0,07= 0,13,

x2 = 2 ·0,13−7 · (0,13)2 = 0,26−7 ·0,0169= 0,1417,

x3 = 2 ·0,1417−7 · (0,1417)2 = 0,2834−0,1405523= 0,14284777.

Làm tròn kết quả cuối cùng, ta thu được 1/7≈ 0,14285 với 5 chữ số đáng tin.

Chú ý 2.3. Công thức truy hồi (2.17) có thể được mở rộng cho bài toán
tìm nghịch đảo hoặc giả nghịch đảo của một ma trận trong thuật toán
Hotelling–Bodewig (còn gọi là phương pháp Newton–Schultz). Bạn đọc
quan tâm có thể tìm đọc P. K. Anh [2, §6.5] hoặc Dahlquist-Björck [5].

Ví dụ 2.8 (Thuật toán Heron6). Cho a > 0, xét phương trình bậc hai

f (x ) := x 2−a = 0. (2.18)

Nghiệm dương của phương trình đó có thể viết dạng x =
p

a . Nhưng
lời giải này chỉ có ý nghĩa về mặt lí thuyết, do căn bậc hai

p
a theo định

nghĩa là một số dương mà bình phương lên bằng a . Do đó, nếu cho một
biểu diễn thập phân của a , thì cách viết

p
a không cho chúng ta một biểu

diễn thập phân của nghiệm
p

a .
Vấn đề của chúng ta là tính gần đúng

p
a và viết kết quả dưới dạng

số thập phân. Mặc dù điều này có thể dễ dàng tính được bằng máy tính,
nhưng chúng ta hãy hình dung làm thế nào máy tính điện tử chỉ làm việc
với các bit 0 và 1 lại có thể tính toán được những phép tính lấy căn bậc hai.

Chú ý rằng trên (0,+∞), f ′(x ) = 2x > 0 và f ′′(x ) = 2> 0. Với x0 > 0 tùy ý,
xét dãy số xây dựng theo phương pháp Newton (2.14):

xn+1 = xn −
f (xn )
f ′(xn )

=
1

2

�

xn +
a

xn

�

, n = 0,1, 2, . . .

Xảy ra các trường hợp sau:

1. x0 >
p

a . Khi đó, phương trình f (x ) = 0 có một khoảng tách nghiệm
là [0, x0]. Theo định lí 2.6, dãy xn là dãy đơn điệu giảm tới

p
a , tức là

xn →
p

a khi n→∞.

6Thuật toán được mô tả bởi Hero của Alexandria vào thế kỉ thứ hai trong cuốn Metrica của ông.
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2. x0 < a . Theo bất đẳng thức Cauchy, ta có

x1 =
1

2

�

x0+
a

x0

�

≥
√

√

x0

�

a

x0

�

=
p

a .

Vậy, bắt đầu từ x1, dãy là đơn điệu giảm về
p

a .

3.
p

x0 =
p

a . Dãy là dãy dừng, tức là x0 = x1 = · · ·.

Như vậy, bằng thuật toán Heron, chúng ta có thể xây dựng dãy lặp để
xấp xỉ căn bậc hai của một số dương với công thức truy hồi chỉ bao gồm
phép tính số học gồm phép cộng, trừ, nhân và chia.

Nhận xét 2.4. Hai phương trình (2.16) và (2.18) trong hai ví dụ trên là hai
trường hợp riêng của phương trình tổng quát

x p = a , p =±1,±2, . . . . (2.19)

Dãy lặp Newton–Raphson x1, x2, . . . cho xấp xỉ nghiệm được tính theo công
thức truy hồi

xn+1 =
1

p

�

(p −1)xn +a x 1−p
n

�

. (2.20)

Đó là công thức truy hồi được dùng trong một số thuật toán máy tính để
tính các căn thức ppa của các số a .

CAS 2.6. Để minh hoạ (2.20), chúng ta hãy viết một vòng lặp ngắn bằng
ngôn ngữ R trong đó chỉ thực hiện các phép toán số học (cộng, trừ, nhân,
chia) để tính căn bậc ba của một số thực.

# Hàm cuberoot() nhận vào một số thực a và sai số cho phép tol,
# cho ra căn bậc ba của nó.

cuberoot <- function(a, tol = 1e-6) {
if (a == 0) {

return(0)
} else {

x <- 1
while (abs(x * x * x - a) > tol) {

x <- (2 * x + a / (x * x)) / 3
}

}
return(x)

}

# Chạy thử cuberoot() cho a = 10.
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a <- 10
result <- cuberoot(a)
print(result)

## [1] 2,15443469

Kết quả chạy cuberoot(a) với tham số a = 10 cho 3p10≈ 2,154434692.

2.4.3 Đánh giá sai số

Trong mục này, chúng ta trình bày hai kết quả về ước lượng sai số trong
phương pháp Newton–Raphson. Kết quả thứ nhất đánh giá sai số trong
bước thứ n +1 thông qua sai số trong bước thứ n . Kết quả này suy ra rằng
phương pháp Newton–Raphson hội tụ bậc hai. Kết quả thứ hai có nghĩa
hơn về mặt thực hành, cho phép đánh giá sai số trong bước thứ n +1 qua
sự sai lệch giữa hai xấp xỉ thứ n và thứ n +1.

Giả sử rằng hàm f có đạo hàm đến cấp hai liên tục, f (α) = 0 và f ′(α) ̸= 0.
Giả sử {xn} là dãy xác định bởi thuật toán Newton–Raphson và xn →α. Xét
các sai số

εn =α− xn , n = 1, 2, . . . .

Khi đó

εn+1 =α− xn+1

=α−
�

xn −
f (xn )
f ′(xn )

�

= εn +
1

f ′(xn )

�

f (α)− f ′(xn )(α− xn )−
1

2
f ′′(cn )(α− xn )

2
�

=−
f ′′(cn )

2 f ′(xn )
ε2

n . (2.21)

Với mỗi n , cn nằm giữa α và xn . Vậy, cn hội tụ tới α. Từ đó, ta có ước lượng

|εn+1| ≤C |εn |2, (2.22)

với C là một hằng số dương phụ thuộc vào đạo hàm cấp một và cấp hai của
f (x ). Ví dụ, nếu [a , b ] là khoảng tách nghiệm của nghiệm α và xn ∈ [a , b ]
với mọi n thì ta có thể xét

M = max
x∈[a ,b ]

| f ′′(x )|, m = min
x∈[a ,b ]

| f ′(x )|, (2.23)

và lấy

C =
M

2m
.
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Ước lượng (2.22) có ý nghĩa về mặt lý thuyết. Nó nói rằng, với điều kiện
f ′ ̸= 0 và điều kiện hội tụ được thỏa mãn, phương pháp Newton–Raphson
hội tụ bậc hai tới nghiệm α của f (x ).

Về mặt thực hành, ước lượng (2.22) khó áp dụng vì không cho ta đánh
giá cụ thể sai số tại bước lặp thứ n . Ta có thể sử dụng đánh giá quen thuộc

|xn+1−α| ≤
| f (xn+1)|

m
, (2.24)

với m xác định như trong (2.23). Mặt khác, khai triển Taylor với số dư dạng
Lagrange của hàm f tại xn cho ta

f (xn+1) = f (xn ) + f ′(xn )(xn+1− xn ) +
f ′′(cn )

2
(xn+1− xn )

2.

Từ công thức truy hồi, ta có

f (xn ) + f ′(xn )(xn+1− xn ) = 0.

Cùng với (2.24), ta thu được

|xn+1−α| ≤
M

2m
|xn+1− xn |2. (2.25)

Ví dụ 2.9. Dùng phương pháp Newton–Raphson tính gần đúng nghiệm
của phương trình quen thuộc sau:

x − sin(x )−0,25= 0.

Các kết quả làm tròn tới 5 chữ số sau dấu phảy thập phân (T. V. Đĩnh [6]).

Lời giải

Ta biết rằng
�

π
4 , π2

�

là một khoảng tách nghiệm của phương trình đã cho.
Với f (x ) := x − sin(x )−0,25, ta có

f ′(x ) = 1− cos x , f ′′(x ) = sin x .

Do trên khoảng đang xét, f ′(x ) và f ′′(x ) đều dương nên ta chọn x0 =π/2 là
xấp xỉ đầu (thỏa mãn điều kiện Fourier) và xây dựng dãy theo quy trình
Newton

xk+1 = xk −
f (xk )
f ′(xk )

.

Các kết quả tính toán bằng máy tính được ghi trong bảng sau:
Để đánh giá sai số, chúng ta hãy xét đạo hàm f ′(x ) = 1− cos(x ). Rõ ràng,

trong khoảng x ∈ [π4 , π2 ],

f ′(x )> 1−
p

2

2
> 0,29288,
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i xi f (xi ) f ′(xi ) xi − f (xi )/ f ′(xi )

0 1,57080 0,32080 1 1, 25000
1 1, 25000 0,05102 0,68468 1,17548
2 1,17548 0,26052×10−2 0,61490 1,17124
3 1,17124 0,63222×10−5 0,61099 1,17123
4 1,17123 0,21232×10−6 . . . . . .

Bảng 2.1: Tính toán trong Ví dụ 2.9

trong khi đó,
| f ′′(x )|= |sin(x )| ≤ 1.

Vậy, nếu lấy M = 1, m = 0,29288 thì với x4,

|x4−α| ≤
f (x4)

m
≈ 1,1612×10−7.

Cũng có thể đánh giá

|x4−α| ≤
M

2m
|x4− x3|2 ≈ 2×10−10.

Các sai số tuyệt đối giới hạn này nhỏ hơn rất nhiều lần so với sai số quy
tròn. Vậy, α≈ 1,17123.

Định lí 2.7:

Giả sử f là hàm có đạo hàm đến cấp 2 liên tục trên [a , b ]. Giả sử
α ∈ (a , b ) là một nghiệm của f (x ) = 0, với f ′(α) ̸= 0. Khi đó, tồn
tại δ > 0 sao cho với mọi x0 ∈ [α−δ,α+δ], quá trình lặp Newton–
Raphson bắt đầu từ x0 sẽ hội tụ tới α.

Chứng minh. Xét hàm số bổ trợ

φ(x ) = x −
f (x )
f ′(x )

.

Vì f ′(α) ̸= 0 nên, bởi tính liên tục, f (x ) ̸= 0 trong một lân cận của α, tức là
tồn tại δ1 > 0 sao cho f ′(x ) ̸= 0 trên (α−δ1,α+δ1).

Tính đạo hàm của φ, chúng ta thu được

φ′ = 1−
( f ′)2− f f ′′

( f ′)2
=

f f ′′

( f ′)2
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xác định trên (α−δ1,α+δ1). Hơn nữa, vì f (α) = 0 nên φ′(α) = 0. Bởi tính liên
tục của φ′ trên (α−δ1,α+δ1) (có được do đạo hàm cấp 2 của f liên tục), ta
suy ra

φ′(x )≈φ′(α) = 0.

Có q ∈ (0, 1) và δ > 0 và nhỏ hơn δ1 sao cho

|φ′(x )| ≤ q < 1, ∀x ∈ [α−δ,α+δ].

Trên khoảng [α−δ,α+δ], phương pháp lặp Newton–Raphson tương đương
với phương pháp lặp đơn xn =φ(xn−1), với hàm φ thỏa mãn điều kiện của
Định lí 2.5. Hơn nữa, với mọi xấp xỉ đầu x0 ∈ [α−δ,α+δ], khoảng cách từ x0

tới nghiệm đúng α nhỏ hơn khoảng cách bé nhất từ hai đầu mút tới α, tức
là nó thỏa mãn (2.10). Do đó, áp dụng Định lí 2.5, có thể suy ra rằng phương
pháp Newton–Raphson hội tụ với mọi cách chọn x0 ∈ [α−δ,α+δ].

Chú ý 2.4. Lưu ý rằng trong phương pháp Newton–Raphson để tìm nghiệm
phương trình f (x ) = 0, chúng ta yêu cầu hàm số f (x ) khả vi tại mọi điểm.
Ví dụ sau đây là về trường hợp f (x ) khả vi trừ tại một điểm duy nhất trong
khi đó dãy lặp thiết lập bởi phương pháp Newton–Raphson không hội tụ.

Xét hàm số f (x ) = 3px . Rõ ràng f (x ) khả vi tại mọi x ̸= 0. Phương trình
f (x ) = 0 có nghiệm duy nhất x = 0.

Mặt khác, với xn ̸= 0, ta có

xn+1 = xn −
f (xn )
f ′(xn )

= xn −
3
p

xn
1

3 3
p

x 2
n

=−2xn .

Như vậy, với mọi cách chọn x0, dãy thiết lập bởi phương pháp Newton–
Raphson có công thức truy hồi là

xn = (−2)n x0.

Dãy đó hội tụ nếu và chỉ nếu x0 = 0.

2.4.4 Tóm tắt thuật toán Newton–Raphson

Phương pháp Newton–Raphson thực hiện theo các bước sau:

1. Cho phương trình f (x ) = 0.

2. Giải sơ bộ: Tìm một khoảng tách nghiệm [a , b ] sao cho f ′ và f ′′ không
đổi dấu.

3. Ấn định sai số ε> 0.

4. Chọn điểm x0 thỏa mãn điều kiện Fourier: f ′(x0) f ′′(x0)> 0.
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5. Với mỗi k = 0, 1, 2, . . . , xác định một cách truy hồi

xk+1 = xk −
f (xk )
f ′(xk )

cho đến khi đạt được độ chính xác như mong muốn.

Từ tóm tắt thuật toán như trên, chúng ta dễ dàng viết được chương
trình máy tính để thực hiện các phép tính. Chương trình mẫu R sau đây
phát triển từ CAS 2.6 để thực hiện phương pháp Newton–Raphson cho
một phương trình phi tuyến trong Ví dụ 2.9.

CAS 2.7. Xét phương trình phi tuyến

x − sin(x )−0,25= 0

như trong Ví dụ 2.9. Bằng phương pháp lặp Newton–Raphson với xấp xỉ
đầu x0 =

π
2 và điều kiện dừng vòng lặp là khi |xi+1 − xi | < 10−6 hoặc số lần

lặp lớn hơn 100, chúng ta thu được kết quả như trên.

# Chương trình thực hiện lặp Newton - Raphson cho phương trình
# phi tuyến tính x - sin(x) - 1/4 = 0, bắt đầu tại x0 = pi/2.

newton <- function(f, f_prime, start, tol = 1e-6, m = 100)
{

x <- start
for (i in 1:m) {

x1 <- x - f(x) / f_prime(x)
if (abs(x1 - x) < tol) {

cat("Kết quả sau", i,
"bước: ", x1, "\n")

break
}
x <- x1

}
return(x)

}

f <- function(x) x - sin(x) - 0.25 # Hàm số f(x)
f_prime <- function(x) 1 - cos(x) # Đạo hàm f'(x)
start <- pi/2 # Bắt đầu với x = pi/2
newton(f, f_prime, start)

## Kết quả sau 5 bước: 1,17122965
## [1] 1,17122965
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2.5 Phương pháp dây cung và một số phương pháp khác

Trong mục này, chúng ta tìm hiểu một số phương pháp khác để tính gần
đúng nghiệm, gồm phương pháp dây cung (secant method), phương pháp
vị trí sai (regular falsi), và phương pháp Steffensen. Tài liệu tham khảo: T. V.
Đĩnh [6, §2.2], P. K. Anh [2, §VI.1, §VI.3].

2.5.1 Phương pháp dây cung

Phương pháp dây cung (secant method) là một trong những phương pháp
“dự đoán-giới hạn” để tìm nghiệm của một hàm số thực. Phương pháp này
tương đối đơn giản và hiệu quả, thường được sử dụng để tìm gần đúng
các nghiệm của các hàm số không tuyến tính. Đặc biệt, phương pháp dây
cung có thể áp dụng cho các hàm không có công thức đơn giản để tính
toán nghiệm chính xác.

Ý tưởng chính của phương pháp dựa trên việc xấp xỉ đường thẳng qua
hai điểm gần đúng của đồ thị hàm số. Giả sử ta muốn tìm nghiệm của hàm
số f (x ) = 0, biết [a , b ] là một khoảng tách nghiệm. Chúng ta bắt đầu bằng
hai điểm x0 = a và x1 = b . Sau đó, phương pháp dây cung cho nghiệm xấp
xỉ mới x2 bằng cách tính giao điểm của đường thẳng nối hai điểm (x0, f (x0))
và (x1, f (x1)) với trục hoành. Công thức tính x2 trong phương pháp dây
cung là:

x2 = x1−
f (x1)(x1− x0)
f (x1)− f (x0)

. (2.26)

Sau khi tính được x2, lại dùng x2 này kết hợp với x1 để tính x3 mới và tiếp
tục quá trình lặp lại đến khi đạt được độ chính xác mong muốn hoặc số
lần lặp đã đủ. Như vậy, công thức truy hồi của phương pháp này là

xn+1 = xn − f (xn )
xn − xn−1

f (xn )− f (xn−1)
, f (xn ) ̸= f (xn−1). (2.27)

Phương pháp dây cung có một số ưu điểm như nó không yêu cầu tính đạo
hàm, phù hợp với những hàm số phức tạp khó tính đạo hàm. Tuy nhiên,
phương pháp này cũng có một số hạn chế như tốc độ hội tụ chậm hơn so
với một số phương pháp khác như phương pháp Newton–Raphson. Hơn
nữa, sự hội tụ phụ thuộc vào việc chọn điểm khởi tạo gần đúng ban đầu:
Nếu chọn sai, quá trình lặp có thể dẫn đến sự hội tụ không đúng nghiệm
hoặc không hội tụ.

CAS 2.8. Hãy viết một chương trình R đơn giản thực hiện phương pháp
dây cung để xấp xỉ nghiệm của phương trình trong CAS 2.3.
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# secant_method() tính xấp xỉ nghiệm theo phương pháp dây cung.
# Yêu cầu: Khoảng (a, b) là một khoảng tách nghiệm
# với f(a) f(b) < 0.

secant_method <- function(f, a, b, tol = 1e-6, m = 50) {
i <- 0
fa <- f(a)
while (abs(b - a) > tol) {

i <- i + 1
if (i > m) {

stop("Không thấy nghiệm sau ",
m, " vòng lặp.")

}
fb <- f(b)
if (fb == fa) {

stop("Không thấy nghiệm sau ",
i, " vòng lặp.")

}
x <- b - fb * ((b - a) / (fb - fa))
a <- b
b <- x
fa <- fb

}
return(b)

}

# Áp dụng secant_method() cho phương trình x^4 - 3 * x + 1 = 0.

f <- function(x) x^4 - 3 * x + 1
secant_method(f, 1, 2, 1e-6, 50)

## [1] 1,3074861

Chúng ta thu được kết quả khớp với kết quả tính bằng phương pháp
chia đôi trong CAS 2.3.

Chú ý 2.5. Phương pháp dây cung được cài đặt trong hàm secant() có
sẵn trong gói pracma của R. Chúng ta hãy so sánh:

library(pracma)
f <- function(x) x^4 - 3 * x + 1
secant(f, 1, 2, 10)

## $root
## [1] 1,3074861
##
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## $f.root
## [1] 6,43929354e-14
##
## $iter
## [1] 9
##
## $estim.prec
## [1] 3,79538578e-09

Kết quả thu được từ secant() của pracma với 9 bước lặp hoàn toàn
trùng khớp với kết quả của chương trình R trong CAS 2.3 với sai số được
yêu cầu là tol< 10−6.

2.5.2 Phương pháp Steffensen

Phương pháp Steffensen7 là phương pháp tìm nghiệm gần đúng dựa theo
công thức truy hồi sau:

xn+1 = xn −
f (xn )
g (xn )

, g (xn ) =
f (xn + f (xn ))− f (xn )

f (xn )
. (2.28)

So sánh với phương pháp Newton–Raphson, phương pháp Steffensen
không yêu cầu tính đạo hàm của hàm f và đặc điểm này có lợi hơn khi giải
các phương trình f (x ) = 0 trong đó hàm f có đạo hàm phức tạp. Tuy nhiên,
trong mỗi bước của phương pháp Steffensen, chúng ta cần tính 2 giá trị
của hàm số.

CAS 2.9. Hãy viết chương trình R dựa trên phương pháp Steffensen trong R

để tìm nghiệm của phương trình x 4−3x 3+1= 0 trong khoảng tách nghiệm
(1, 2).

# Hàm steffensen_method() lặp theo phương pháp Steffensen.

steffensen_method <- function(f, a, tol = 1e-6, m = 100) {
i <- 0
x <- a
fx <- f(x)
gx <- (f(x + fx) - fx) / fx
while (i < m && abs(fx) > tol) {

i <- i + 1
if (gx == 0) {

return(list(root = NA, iter = i))
}

7Johan Frederik Steffensen (28/02/1873 – 20/12/1961) là một nhà toán học và thống kê học
người Đan Mạch.
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else {
x <- x - fx / gx
fx <- f(x)
gx <- (f(x + fx) - fx) / fx

}
}
return(list(root = x, iter = i))

}

# Áp dụng cho phương trình x^4 - 3 * x + 1 = 0.

f <- function(x) x^4 - 3 * x + 1
steffensen_method(f, 2, 1e-6, 100)

## $root
## [1] 1,3074861
##
## $iter
## [1] 60

Kết quả sau 60 vòng lặp, bắt đầu với giá trị x0 = 2 khớp với kết quả cho
trong CAS 2.3.

Chú ý 2.6. Lưu ý, cũng giống như phương pháp Newton–Raphson, có thể
xảy ra các tình huống quá trình lặp Steffensen không hội tụ, hoặc hội tụ
không đúng nghiệm cần tìm. Ví dụ, nếu lấy xấp xỉ đầu x0 = 1 thì quá trình
lặp theo phương pháp Steffensen cho dãy lặp hội tụ tới nghiệm trong (0, 1)
chứ không phải nghiệm trong khoảng (1, 2).

steffensen_method(f, 1, 1e-6, 100)

## $root
## [1] 0,337666766
##
## $iter
## [1] 4

2.5.3 Phương pháp vị trí sai (regula falsi)

Phương pháp vị trí sai (regula falsi) là một biến thể của phương pháp dây
cung trong đó, thay vì lấy dây cung đi qua hai điểm (xn , fn ) và (xn−1, fn−1) để
xác định xn+1, người ta lấy dây cung đi qua điểm (xn , fn ) và điểm (xn ′ , fn ′ )
với n ′ < n là chỉ số lớn nhất bé hơn n sao cho f (xn ) và f (xn ′ ) trái dấu. Khi
đó, xn+1 là giao điểm của đường thẳng đi qua hai điểm (xn , fn ) và (xn ′ , fn ′ ).

58



2.5. PHƯƠNG PHÁP DÂY CUNG VÀ MỘT SỐ PHƯƠNG PHÁP KHÁC

Cách chọn này đảm bảo sự hội tụ của dãy điểm xn tới nghiệm của f (x ) = 0
với điều kiện ban đầu f (x0) f (x1)< 0.

CAS 2.10. Đoạn chương trình R sau đây minh hoạ phương pháp vị trí sai
áp dụng cho phương trình x 4−3x +1= 0.

# Hàm regulaFalsi() tìm nghiệm theo phương pháp vị trí sai.

regulaFalsi <- function(f, a, b, tol = 1e-6, m = 1000) {
i <- 0
fa <- f(a)
fb <- f(b)

# Vòng lặp while tiếp tục lặp khi |b - a| > tol
# và i < m đồng thời thoả mãn
while (abs(b - a) > tol && i < m) {
c <- (a * fb - b * fa) / (fb - fa)
fc <- f(c)
if (fc == 0) {

# Đã tìm thấy nghiệm!
break

} else if (sign(fa) * sign(fc) < 0) {
b <- c
fb <- fc

} else {
a <- c
fa <- fc

}
i <- i + 1
}

return(list(root = c, iter = i))
}

# Áp dụng regulaFalsi() cho x^4 - 3 * x + 1 = 0.

f <- function(x) x^4 - 3 * x + 1
regulaFalsi(f, 1, 2, 1e-6, 1000)

## $root
## [1] 1,3074861
##
## $iter
## [1] 76

Sau 76 bước lặp, regulaFalsi() cho kết quả khớp với những kết quả
thu được từ các phương pháp khác.

59



CHƯƠNG 2. TÍNH GẦN ĐÚNG NGHIỆM CỦA MỘT PHƯƠNG TRÌNH

Lưu ý, regulaFalsi() cũng được lập sẵn trong gói pracma của phần
mềm R.

2.6 Câu hỏi và bài tập

1. Cho φ(x ) = 2− e −x . Chứng minh rằng dãy pn xác định bởi công thức lặp
pn =φ(pn−1), n = 1, 2, . . . , hội tụ với mọi cách chọn p0 ∈ [1, 3].

2. Xét phương trình f (x ) := e x −5 x 2+2022 x −10= 0.

(a) Chứng minh [0, 1] là một khoảng tách nghiệm của nó.

(b) Đặt

φ(x ) =
5 x 2− e x +10

2022
.

Chứng minh rằng dãy số xác định bởi x0 = 0, xk+1 = φ(xk ), k =
0,1,2 . . . hội tụ tới nghiệm duy nhất của phương trình f (x ) = 0.

(c) Tính x1, x2. Coi x2 là nghiệm gần đúng của phương trình trên. Đánh
giá sai số tuyệt đối của x2.

3. Cho phương trình x 3− x −1= 0.

(a) Bằng khảo sát hàm số f (x ) = x 3 − x − 1 với x ∈ [1,2], chỉ ra rằng
phương trình x 3− x −1= 0 có nghiệm duy nhất trên đoạn [1, 2].

(b) Biết phương trình đã cho tương đương với x = 3px +1. Sử dụng
xấp xỉ ban đầu x0 = 1 và công thức xn =

3
p

xn−1+1, hãy tính xk với
1≤ k ≤ 6.

(c) Đặt ϕ(x ) = 3px +1. Tìm một số q < 1 sao cho |ϕ′(x )| ≤ q với mọi
x ∈ (1,2). Từ đó, đánh giá sai số tuyệt đối cho x6.

(d) Cần thực hiện bao nhiêu lần lặp để thu được nghiệm gần đúng với
độ chính xác ε= 10−5? Tính nghiệm gần đúng đó.

4. Cho φ(x ) =π+
1

2
cos

� x

2

�

và f (x ) = x −φ(x ).

(a) Chứng minh rằng [0,2π] là một khoảng tách nghiệm của phương
trình f (x ) = 0.

(b) Tìm một số dương q < 1 sao cho |φ′(x )| ≤ q với mọi x ∈ [0, 2π].

(c) Chứng minh rằng phương trình x =φ(x ) có nghiệm duy nhất trên
[0, 2π].

(d) Xây dựng dãy lặp x0 = 2π, xk+1 :=φ(xk ), k = 0,1, 2, . . .. Tính các giá trị
x1, x2. Đánh giá sai số |x2−α|, với α là nghiệm duy nhất của phương
trình x =φ(x ).
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5. Giả sử phương trình x = φ(x ) có nghiệm α trong [a , b ], hàm φ khả vi
trên [a , b ], a ≤φ(x )≤ b với mọi x ∈ [a , b ], và đạo hàm φ′ thỏa mãn

|φ′(x )|< q ,

với q là một hằng số dương, q < 1.

(a) Chứng minh rằng với mọi x , y ∈ [a , b ] ta có

|x − y | ≤
1

1−q

�

|x −φ(x )|+ |y −φ(y )|
�

.

(b) Lấy x0 ∈ [a , b ] tùy ý và xây dựng dãy lặp x1 = φ(x0), x2 = φ(x1), . . . ,
xk+1 =φ(xk ). Chứng minh rằng với mọi j , k ≥ 1 ta có

|xk − x j | ≤
q k +q j

1−q
|x0− x1| .

(c) Chứng minh đánh giá tiên nghiệm sau:

|xk −α| ≤
q k

1−q
|x0− x1| .

[Cho j →∞ cùng với nhận xét rằng q j → 0 vì 0< q < 1.]

6. Tính gần đúng nghiệm của phương trình x+ln(x ) = 0 bằng phương pháp
lặp đơn.

7. Xét phương trình 20x 3+ x −22= 0.

(a) Chứng minh phương trình trên có nghiệm duy nhất α trong khoảng
(1, 2).

(b) Tính gần đúng nghiệm α bằng phương pháp Newton với xấp xỉ ban
đầu x0 = 2 và với 3 bước lặp. Đánh giá sai số của nghiệm xấp xỉ.

8. Xét phương trình f (x ) := x 4−3x +1= 0.

(a) Chứng minh rằng các khoảng (0,1) và (1,2) là các khoảng tách
nghiệm của phương trình đó.

(b) Dùng phương pháp Newton xuất phát từ x0 = 0 giải gần đúng
phương trình với độ chính xác 10−2.

9. Xét phương trình 3x −4x = 0.

(a) Tính gần đúng nghiệm dương bé nhất của phương trình này bằng
phương pháp Newton và viết kết quả dưới dạng thập với 6 chữ số
chắc. [Trả lời: x ≈ 0,379194].
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(b) Biết [1,2] là một khoảng tách nghiệm của phương trình này. Tính
gần đúng nghiệm duy nhất trong khoảng đó với độ chính xác 10−5

bằng phương pháp Newton–Raphson. [Trả lời: x ≈ 1,79369].

10. Dùng phương pháp Newton–Raphson tính gần đúng nghiệm của phương
trình x 2−2 sin(x )−0,5= 0 trong khoảng [1, 2] với hai chữ số thập phân là
chữ số chắc.

11. Xét phương trình x 3+20x −22= 0.

(a) Chứng minh phương trình trên có nghiệm duy nhất α trong khoảng
�

1, 3
2

�

.

(b) Tính gần đúng nghiệm α bằng phương pháp Newton–Raphson với
xấp xỉ ban đầu x0 = 3/2 và với 3 bước lặp. Hãy đánh giá sai số của
nghiệm gần đúng thu được.
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Chương3
Tính gần đúng nghiệm của một
hệ phương trình tuyến tính

Trong chương này, chúng ta bắt đầu với lí thuyết hệ phương trình tuyến
tính, nhắc lại một số kết quả cơ bản về hệ phương trình tuyến tính như
định lí Kronecker–Capelli, công thức Cramer, phương pháp khử Gauss
và Gauss-Jordan. Tiếp theo, chúng ta sẽ tiếp tục với phương pháp số để
giải gần đúng, với trọng tâm là phương pháp lặp đơn và phương pháp lặp
Seidel.

Nội dung
3.1 Hệ phương trình tuyến tính. Phương pháp Gauss . . . . . . . 63

3.1.1 Định nghĩa. Sự tồn tại và duy nhất nghiệm . . . . . . . . 64
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3.1 Hệ phương trình tuyến tính. Phương pháp Gauss

Mục này bắt đầu với việc nhắc lại một số khái niệm và kết quả cơ bản về hệ
phương trình tuyến tính. Các nội dung này trùng lặp với một số nội dung
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trong học phần Toán cao cấp hoặc Đại số tuyến tính. Tiếp theo, chúng
ta nói về phương pháp khử Gauss và vấn đề chọn trụ tối đại. Cuối cùng,
chúng ta giới thiệu một số ví dụ về giải hệ phương trình tuyến tính bằng
máy tính. Tài liệu tham khảo: T. V. Đĩnh [6, §3.2], P. K. Anh [2, §VII.2, §VII.3],
Kreyszig [9, §20.1], Dương Ngọc Sơn và đồng tác giả [10].

3.1.1 Định nghĩa. Sự tồn tại và duy nhất nghiệm

Một phương trình tuyến tính của n ẩn số x1, x2, . . . , xn có dạng

a1 x1+a2 x2+ · · ·+an xn = b , (3.1)

trong đó a1, a2, . . . , an và b là các số thực. Với m ≥ 1 là một số nguyên, một
hệ m phương trình tuyến tính của n ẩn số x1, x2, . . . , xn có dạng















a11 x1+a12 x2+ · · ·+a1n xn = b1

a21 x1+a22 x2+ · · ·+a2n xn = b2

. . . . . . . . . . . . . . . . . .

am1 x1+am2 x2+ · · ·+amn xn = bm

, (3.2)

trong đó ai j và bi là các hằng số cho trước. Các số ai j gọi là hệ số của x j

trong phương trình thứ i còn bi gọi là số hạng tự do của phương trình thứ
i . Các hệ phương trình tuyến tính có vẻ đơn giản những lại có rất nhiều
ứng dụng và xuất hiện nhiều trong khoa học kĩ thuật, kinh tế, sinh học,
khoa học xã hội, v.v.

Rõ ràng, hệ phương trình (3.2) được xác định nếu chúng ta biết các hệ
số và số hạng tự do của nó. Chúng có thể được sắp xếp thành hai ma trận
như sau:

A :=









a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn









, A :=









a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
...

...
...

am1 am2 . . . amn bm









. (3.3)

Ma trận A được gọi là ma trận hệ số, còn ma trận A gọi là ma trận bổ sung
của hệ của phương trình (3.2). Từ ma trận bổ sung A, ta có thể xây dựng lại
hệ (3.2) một cách dễ dàng.

Nghiệm của hệ (3.2) là một bộ có thứ tự (x1, x2, . . . , xn ) (còn gọi là một
vectơ trong Rn ) thỏa mãn tất cả m phương trình đó. Giải hệ phương trình
(3.2) là tìm hoặc mô tả một cách “tường minh” tất cả các nghiệm của nó.
Việc giải các hệ phương trình tuyến tính thường bao gồm các bước biến
đổi hệ phương trình ban đầu thành các phương trình có cùng tập nghiệm,
gọi là hệ phương trình tương đương. Các phép biến đổi giữa các hệ phương
trình tương đương gọi là biến đổi tương đương.
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Đối với một hệ phương trình tuyến tính tổng quát, có thể xảy ra một
trong các tình huống sau: hệ không có nghiệm (vô nghiệm), hệ có nghiệm
duy nhất, và hệ có vô số nghiệm.

Định lí 3.1: Kronecker–Capelli

Hệ phương trình (3.2) có nghiệm nếu và chỉ nếu

r (A) = r (A), (3.4)

trong đó, r (A) và r (A) lần lượt là hạng của ma trận hệ số A và ma trận
bổ sung A. Hơn nữa, hệ có nghiệm duy nhất nếu và chỉ nếu (3.4) xảy
ra và hạng của A bằng số ẩn số của hệ.

Chứng minh của định lí Kronecker–Capelli bạn đọc có thể xem trong
[10, Chương 1].

Khi hệ có nghiệm duy nhất thì số phương trình không ít hơn số ẩn số
và hệ có thể đưa về dạng

Ax= b (3.5)

với A là một ma trận vuông khả nghịch, x= (x1, . . . , xn )T và b= (b1, . . . , bn )T

là các vectơ cột (n là số các ẩn số). Ở vế trái Ax là phép nhân một ma trận
cỡ n ×n với một vectơ cột, xem như một ma trận cỡ n ×1. Hơn nữa, ta có
định lí Cramer sau1.

Định lí 3.2: Cramer

Xét hệ phương trình (3.5) với A là một ma trận vuông. Nếu det(A) ̸= 0
thì hệ phương trình có nghiệm duy nhất

xi =
det(A←i b)

det(A)
.

Trong đó, A←i b là ma trận thu được bằng cách thay cột thứ i của A
bởi b.

Chứng minh. Xem [9, §7.7] hoặc [10, Chương 1].

3.1.2 Phương pháp Gauss

Trong mục này, chúng ta nói về hệ dạng bậc thang và phương pháp khử
Gauss (Gauss elimination method). Tài liệu tham khảo: Kreyszig [9, §20.1].

1Gabriel Cramer (1704 – 1752) là một nhà toán học người Thụy Sỹ.
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Hệ tam giác, hệ bậc thang. Hệ phương trình tuyến tính dạng tam giác là
hệ có dạng tổng quát (3.2) với m = n (số ẩn bằng số phương trình) và, với
mỗi 1≤ j < i ≤ n , hệ số ai j bằng 0, còn với mỗi k , hệ số ak k ̸= 0. Khi ấy, ma
trận hệ số của hệ tam giác có dạng

A =









a11 a12 . . . a1n

0 a22 . . . a2n
...

...
...

...
0 0 · · · ann









.

Trong trường hợp này, phương trình thứ n có dạng

ann xn = bn ,

nên có thể giải ra được

xn =
bn

ann
(ann ̸= 0).

Nếu n = 1, hệ có 1 ẩn, thì ta đã giải xong. Nếu n ≥ 2, ta thay xn vào phương
trình thứ n −1, ta giải được

xn−1 =
1

an−1,n−1

�

bn−1−an−1,n ·
bn

ann

�

.

Nếu n = 2, thì phương trình có hai ẩn số x1 và x2 và đã được giải.
Nếu n ≥ 3, tiếp tục thay xn−1 và xn vào phương trình thứ n − 2, ta giải

được xn−2. Quá trình này tiếp tục cho đến khi ta giải được x1.

Ví dụ 3.1. Giải hệ phương trình sau đây.






x1+ x2− x3 = 2

2x2− x3 = 2

3x3 = 5.

Lời giải

Từ phương trình thứ 3, ta có x3 =
5
3 . Thay vào phương trình thứ hai, ta có

2x2−
5

3
= 2,

giải được x2 =
11
6 . Thay x2 =

11
6 và x3 =

5
3 vào phương trình thứ nhất

x1+
11

6
−

5

3
= 2.

Giải phương trình cuối, ta có x1 =
11
6 . Vậy, hệ có nghiệm duy nhất

(x1, x2, x3) =
�

11

6
,

11

6
,

5

3

�

.
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Phương pháp Gauss. Trên đây, ta đã thấy rằng các hệ phương trình dạng
tam giác có thể được giải một cách dễ dàng từ dưới lên. Điều này là cơ sở
của phương pháp Gauss2 dựa trên các biến đổi sơ cấp.

Định nghĩa 3.1:

Đối với một hệ phương trình tuyến tính (3.2), các phép biến đổi sau
đây gọi là các phép biến đổi sơ cấp:

1. Đổi chỗ hai phương trình của hệ,

2. Nhân hai vế của một phương trình với một số khác không,

3. Lấy hai vế của một phương trình trong hệ nhân với cùng một
số khác không rồi cộng vào hai vế tương ứng của một phương
trình khác.

Ý tưởng cơ bản của phương pháp Gauss là dùng các phép biến đổi sơ cấp
trên các phương trình để đưa hệ về dạng tam giác trên. Quá trình này gọi là
quá trình thuận. Từ hệ dạng tam giác trên, ta giải nghiệm như trong mục
trước, ngược từ dưới lên, gọi là quá trình ngược.

Xét hệ phương trình

a11 x1+a12 x2+a13 x3 = b1, (3.6)
a21 x1+a22 x2+a23 x3 = b2, (3.7)
a31 x1+a32 x2+a33 x3 = b3. (3.8)

Các hệ số của x1, tức là a11, a12, và a13, không đồng thời bằng không, vì nếu
tất cả chúng đều bằng 0 thì hệ phương trình không chứa x1 và vậy thì nó
tương đương với hệ 3 phương trình của 2 ẩn x2 và x3. Bằng cách đổi thứ tự
các phương trình, ta có thể giả sử a11 ̸= 0. Khi đó, bằng cách chia cả hai vế
cho a11, phương trình thứ nhất (3.6) được đưa về dạng

x1+
a12

a11
x2+

a13

a11
x3 =

b1

a11
. (3.9)

Bằng cách đặt

a (1)12 =
a12

a11
, a (1)13 =

a13

a11
, b (1)1 =

b1

a11
,

ta viết phương trình trên là

x1+a (1)12 x2+a (1)13 x3 = b (1)1 . (3.10)

2Johann Carl Friedrich Gauß (1777 – 1855) là một nhà toán học người Đức.
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Ta sẽ dùng phương trình (3.10) này để “khử” x1 trong các phương trình thứ
hai và thứ ba. Nhân (3.10) với −a21 rồi cộng vào phương trình thứ hai, vế
theo vế, ta thấy hệ số của x1 trong phương trình thu được triệt tiêu. Cụ thể
là

a (1)22 x2+a (1)23 x3 = b (1)2 (3.11)

với
a (1)22 = a22−a (1)12 a21, a (1)23 = a23−a (1)13 a21, b (1)2 = b2−a21b (1)1 .

Để khử x1 ở phương trình thứ ba (3.8), ta nhân hai vế của (3.10) với −a31

rồi cộng vế theo vế với (3.8), ta thấy hệ số của x1 trong phương trình thu
được triệt tiêu. Nó có dạng

a (1)32 x2+a (1)33 x3 = b (1)3 (3.12)

với
a (1)32 = a32−a (1)12 a31, a (1)33 = a33−a (1)13 a31, b (1)3 = b3−a31b (1)1 .

Đối với hệ hai phương trình của hai ẩn (3.11) và (3.12), ta có thể áp dụng
quy trình tương tự để khử x2 từ (3.12). Giả sử a (1)22 ̸= 0. Chia hai vế của (3.11)
cho a (1)22 , ta đưa nó về dạng

x2+a (2)33 x3 = b (2)3 , (3.13)

với

a (2)33 =
a (1)33

a (1)22

, b (2)3 =
b (1)3

a (1)22

. (3.14)

Ta dùng (3.13) để khử x2 từ phương trình (3.12). Nhân hai vế của (3.13) với
−a (1)32 rồi cộng phương trình thu được, vế theo vế, với (3.12), ta thu được
phương trình không chứa x2 có dạng

a (2)33 x3 = b (2)3 , (3.15)

với
a (2)33 = a (1)33 −a (1)23 a (1)32 , b (2)3 = b (1)3 − b (1)2 a (1)32 .

Bắt buộc a (2)33 ̸= 0. Chia hai vế của (3.15) cho a (2)33 ta thu được

x3 = b (3)3 ,

với

b (3)3 =
b (2)3

a (2)33

.
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3.1. HỆ PHƯƠNG TRÌNH TUYẾN TÍNH. PHƯƠNG PHÁP GAUSS

Tổng hợp các phương trình thu được, ta có hệ sau

x1+a (1)12 x2+a (1)13 x3 = b (1)1 ,

x2+a (2)23 x3 = b (2)2 ,

x3 = b (3)3 .

Đây là hệ phương trình dạng tam giác ta đã biết cách giải.

Chọn phần tử trụ tối đại. Các tính toán trong phương pháp khử Gauss
nêu trên có thể sinh ra sai số lớn khi thực hiện phép chia cho các số có trị
tuyệt đối nhỏ. Để giảm sai số, ta thực hiện khử Gauss với việc chọn phần
tử trụ có trị tuyệt đối lớn nhất, gọi là phương pháp “chọn phần tử trụ tối
đại” (Gauss elimination with partial pivoting). Quá trình khử Gauss cùng
với việc chọn trụ tối đại được minh hoạ trong ví dụ sau:

Ví dụ 3.2. Giải hệ phương trình sau bằng phương pháp khử Gauss với trụ
tối đại.







12x2+ x3 = 7

3x1+ 3x2+ x3 =−8

10x1+ x2−2x3 =−9

Trong ví dụ này, hệ số của x1 trong phương trình đầu tiên bằng 0 nên chúng
ta sẽ đổi chỗ phương trình thứ nhất. Do hệ số của x1 lớn nhất ở phương
trình thứ 3 nên chúng ta chọn nó là phần tử trụ và sắp xếp lại như sau:







10x1+ x2−2x3 =−9

3x1+ 3x2+ x3 =−8

12x2+ x3 = 7.

Tiếp theo, dùng phương trình thứ nhất để khử x1 trong phương trình thứ
hai để thu được







10x1+ x2− 2x3 =−9

2,7x2+1,6x3 =−5,3

12x2+ x3 = 7.

Do hệ số của x2 trong phương trình thứ 3 lớn hơn nên đổi chỗ phương
trình thứ hai và thứ 3 để thu được







10x1+ x2− 2x3 =−9

12x2+ x3 = 7

2,7x2+1,6x3 =−5,3
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Dùng phương trình thứ hai để khử x2 trong phương trình thứ 3, ta thu được







10x1+ x2− 2x3 =−9

12x2+ x3 = 7

1,375x3 = 6,875

Từ hệ phương trình cuối cùng, chúng ta giải ngược để thu được

x3 =−5, x2 = 1, x1 =−2.

CAS 3.1. Phương pháp khử Gauss có sẵn trong thư viện matlib3 của R.
Hãy thử với hệ phương trình sau:







4x1+5x2−2x3 =−13

3x1+ x2+6x3 = 25

−3x1+ x2+ x3 = 12

(3.16)

3.2 Phương pháp lặp đơn

Trong mục này, chúng ta tìm hiểu phương pháp giải gần đúng một hệ
phương trình tuyến tính bằng quá trình lặp. Tài liệu tham khảo: T. V. Đĩnh
[6, §3.3], P. K. Anh [2, §VII.6], Kreyszig [9, §20.3].

Xét phương trình
Ax= b.

Cũng như phương pháp lặp điểm bất động cho phương trình một ẩn, ta
bắt đầu bằng việc đưa phương trình về dạng

x= Bx+ c, (3.17)

trong đó, ma trận hệ số B và vectơ c được suy ra từ A và b. Từ đó, ta xây
dựng dãy lặp

x(k+1) = Bx(k )+ c, (3.18)

x(0) cho trước. (3.19)

Khi một số điều kiện được thỏa mãn, ta có thể hi vọng sau một số bước
lặp, vectơ x(k ) là một xấp xỉ của nghiệm của hệ ban đầu. Phần tiếp theo, ta
sẽ nói về những điều kiện của B để bước lặp trên cho dãy các xấp xỉ của
nghiệm.

3matlib: Matrix Functions for Teaching and Learning Linear Algebra and Multivariate Statistics,
DOI: https://doi.org/10.32614/CRAN.package.matlib
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3.2. PHƯƠNG PHÁP LẶP ĐƠN

3.2.1 Sự hội tụ của phương pháp lặp đơn

Để có thể nói về tính hội tụ của các phương pháp lặp cho hệ phương trình
cho ngắn gọn, chúng ta đưa ra định nghĩa sau.

Định nghĩa 3.2:

Giả sử α= (α1, . . . ,αn ) là một nghiệm của hệ phương trình. Nếu x(k )j →
α j , j = 1, 2, . . . n , khi k →∞ thì ta nói phương pháp lặp (3.18), (3.19)
hội tụ.

Chuẩn của vectơ

Để dễ dàng mô tả sự hội tụ của quá trình lặp, chúng ta mô tả sự hội tụ của
dãy các vectơ bằng sự hội tụ của dãy số thông qua khái niệm chuẩn (norm)
của vectơ.

Đối với một vectơ
x= (x1, x2, . . . , xn ) ∈Rn ,

chúng ta định nghĩa các chuẩn sau:

∥x∥∞ := max
1≤ j≤n

|x j |, (3.20)

∥x∥1 := |x1|+ |x2|+ · · ·+ |xn |, (3.21)

∥x∥2 :=
Æ

|x1|2+ |x2|2+ · · ·+ |xn |2. (3.22)

Chúng được gọi là, theo thứ tự, là chuẩn ℓ∞, ℓ1, và ℓ2
4 Chúng là các trường

hợp riêng của chuẩn ℓp
5) trên không gian các dãy số, hữu hạn hoặc vô

hạn. Chuẩn ℓ2 còn được gọi là chuẩn Euclidean trên Rn và nó được sinh ra
bởi một tích vô hướng.

Ví dụ 3.3. Xác định chuẩn ℓ∞, ℓ1, và ℓ2 của vectơ x= (1, 2,−3) ∈R3.

Lời giải

Tính toán trực tiếp, ta có

∥x∥∞ =max{|1|, |2|, | −3|}= 3,

∥x∥1 = |1|+ |2|+ | −3|= 6,

và
∥x∥2 =

p

|1|2+ |2|2+ | −3|2 =
p

14.

4T. V. Đĩnh [6] gọi chuẩn ∥ · ∥∞ là ∥ · ∥0.
5Chữ cái ℓ lấy trong tên của Henri Léon Lebesgue (28/6/1875 – 26/7/1941). Ông là một nhà

toán học người Pháp
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Sử dụng một trong các chuẩn trên, ta đưa điều kiện hội tụ trong định nghĩa
3.2 về điều kiện hội tụ của một dãy số không âm.

Định lí 3.3:

Phương pháp lặp (3.18), (3.19) hội tụ khi và chỉ khi

∥x(k )−α∥p → 0, k →∞

với p =∞,1, hoặc 2.

Chuẩn của ma trận

Đối với ma trận cấp m×n , B ∈Mat(m×n ;R)6, ta cũng định nghĩa các chuẩn
của B như sau:

∥B∥∞ := max
1≤i≤m

n
∑

j=1

|bi j |, (3.23)

∥B∥1 := max
1≤ j≤n

m
∑

i=1

|bi j |. (3.24)

Để tính ∥B∥∞, chúng ta tính tổng các giá trị tuyệt đối các yếu tố trên mỗi
hàng. Có m kết quả như vậy, tương ứng với m hàng của B . Khi đó, ∥B∥∞
chính là kết quả lớn nhất trong m kết quả ấy. Vì vậy, ∥B∥∞ đôi khi gọi là
chuẩn hàng (cho dễ nhớ).

Chuẩn ∥B∥1 được tính tương tự như ∥B∥∞, chỉ thay hàng bởi cột:

∥B∥1 = ∥B T ∥∞,

trong đó, B T là phép chuyển vị của B . Khi đó, ∥ · ∥p , với p =∞ hoặc p = 1,
thỏa mãn các tính chất của một chuẩn trong không gian vectơ.

• ∥B∥p ≥ 0, ∥B∥p = 0 nếu và chỉ nếu B là ma trận 0.

• Với mọi số thực r ∈R và ma trận B ,

∥r B∥p = |r | · ∥B∥p .

• (bất đẳng thức tam giác) Với mọi ma trận vuông B và C cùng cấp,

∥B +C ∥p ≤ ∥B∥p + ∥C ∥p .

6Nhắc lại rằng Mat(m ×n ;R) kí hiệu tập các ma trận cỡ m ×n .
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Ví dụ 3.4. Xác định các chuẩn ∥B∥∞ và ∥B∥1, với B là ma trận sau đây:

B =





1 3 −5
−2 4 9
−1 1 3



 . (3.25)

Lời giải

Để tính ∥B∥∞, ta tính tổng các giá trị tuyệt đối của các yếu tố dọc theo các
hàng của B . Ở hàng thứ nhất, ta có

3
∑

j=1

b1 j = |1|+ |3|+ | −5|= 9.

Tính toán tương tự ở hàng thứ hai và hàng thứ ba, ta thu được

3
∑

j=1

b2 j = 15,
3
∑

j=1

b3 j = 5.

Vậy,
∥B∥∞ =max{9, 15, 5}= 15.

Để tính ∥B∥1, ta tính tổng các giá trị tuyệt đối của các yếu tố dọc theo
các cột của B . Cụ thể như sau: Ở cột thứ nhất, ta có

3
∑

i=1

bi 1 = |1|+ | −2|+ | −1|= 4.

Tương tự, ta tính toán ở các cột thứ hai và thứ ba,

3
∑

i=1

bi 2 = 8, và
3
∑

i=1

bi 3 = 17.

Vậy
∥B∥1 =max{4, 8, 17}= 17.

Chú ý 3.1. Nếu đồng nhất các vectơ với một ma trận một cột thì chuẩn
của vectơ có thể xem là trường hợp riêng của chuẩn ma trận.

CAS 3.2. Trong R, chuẩn của ma trận được tính bằng norm(). Đoạn code
mẫu sau đây tính chuẩn 1 và chuẩn vô hạn của ma trận trong ví dụ trên.
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# Đưa vào ma trận B gồm 9 yếu tố xếp làm 3 cột.
B <- matrix(c(1, -2, -1, 3, 4, 1, -5, 9, 3), ncol = 3)

# In ra B (để kiểm tra)
print(B)

## [,1] [,2] [,3]
## [1,] 1 3 -5
## [2,] -2 4 9
## [3,] -1 1 3

# In ra giá trị chuẩn 1 của B
print(norm(B, type = "O")) # Chuẩn 1 (one norm)

## [1] 17

# In ra giá trị chuẩn vô cùng của B
print(norm(B, type = "I")) # Chuẩn vô hạn (infinity norm)

## [1] 15

CAS 3.3. Để tính chuẩn của một vectơ, chúng ta biến nó thành một ma
trận 1 cột bằng hàm as.matrix (lấy từ Tiếng ANh “as matrix”) và tính
chuẩn ma trận của nó.

x <- c(1, -2, 3, 5)

# Hàm as.matrix chuyển một vectơ thành một ma trận một cột
A <- as.matrix(x)

# Tính các chuẩn của A
print(norm(A, type = "I"))

## [1] 5

print(norm(A, type = "O"))

## [1] 11

Một tính chất của chuẩn của ma trận ∥B∥p là tính “tương thích” của
chúng với chuẩn của vectơ, theo nghĩa
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Mệnh đề 3.1:

Giả sử p =∞ hoặc p = 1. Khi đó,

∥Bx∥p ≤ ∥B∥p · ∥x∥p , B ∈Mat(m ×n ;R), x ∈Rn . (3.26)

Hơn nữa, với mỗi ma trận B , ∥B∥p là số dương bé nhất sao cho (3.26)
đúng với mọi x, có nghĩa là

∥B∥p =min
�

C > 0 | ∥Bx∥p ≤C · ∥x∥p ∀ x ∈Rn
	

. (3.27)

Chứng minh. Chúng ta chứng minh cho trường hợp p = 1.
Với x= (x1, . . . , xn ) ∈Rn tuỳ ý, gọi Bx= y= (y1, . . . , ym ) ∈Rm , thì

yk =
n
∑

j=1

bk j x j .

Khi đó, dùng bất đẳng thức giá trị tuyệt đối của tổng nhỏ hơn hoặc bằng
tổng các giá trị tuyệt đối,

∥Bx∥1 = ∥y∥1 =
m
∑

k=1

|yk |=
m
∑

k=1

�

�

�

�

�

n
∑

j=1

bk j x j

�

�

�

�

�

≤
m
∑

k=1

n
∑

j=1

�

�bk j

�

� ·
�

�x j

�

�=
n
∑

j=1

�

�x j

�

�

�

m
∑

k=1

�

�bk j

�

�

�

. (3.28)

Theo định nghĩa, với mọi j ∈ {1, 2, . . . , n}, ta có
m
∑

k=1

�

�bk j

�

�≤ max
1≤ℓ≤n

m
∑

k=1

|bkℓ|= ∥B∥1.

Thay vào bất đẳng thức (3.29) ở trên, ta thu được

∥Bx∥1 ≤
n
∑

j=1

�

�x j

�

�

�

m
∑

k=1

�

�bk j

�

�

�

≤ ∥B∥1

n
∑

j=1

�

�x j

�

�= ∥B∥1∥x∥1.

Đó chính là (3.26) trong trường hợp p = 1. Nói cách khác, ∥B∥1 thuộc vào
tập hợp trong vế phải của (3.27), và vậy thì, với p = 1,

∥B∥p ≥min
�

C > 0 | ∥Bx∥p ≤C · ∥x∥p ∀ x ∈Rn
	

. (3.29)

Để chứng minh bất đẳng thức ngược lại, trong trường hợp p = 1, ta giả
sử ℓ0 là chỉ số thỏa mãn

m
∑

k=1

�

�bkℓ0

�

�= ∥B∥1
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Khi đó, lấy x0 = (0, . . . , 1, . . . , 0), với số 1 xuất hiện ở thành phần thứ ℓ0. Khi đó,

∥Bx0∥1 =
m
∑

k=1

�

�

�

�

�

n
∑

j=1

bk j x j

�

�

�

�

�

=
m
∑

k=1

�

�bkℓ0

�

�= ∥B∥1 = ∥B∥1∥x0∥1.

Như vậy, nếu C tùy ý thuộc vào tập hợp trong vế phải của (3.27) thì

C =C ∥x0∥1 ≥ ∥Bx0∥1 = ∥B∥1.

Vậy thì
∥B∥1 ≤min

�

C > 0 | ∥Bx∥p ≤C · ∥x∥p ∀ x ∈Rn
	

. (3.30)

Từ các bất đẳng thức (3.29) và (3.30), ta thu được (3.27).
Chứng minh trong trường hợp p =∞ dành cho bạn đọc.

Chú ý 3.2. Một chuẩn ma trận nữa thường dùng là chuẩn 2, được định
nghĩa dựa trên (3.26) như sau:

∥B∥2 := sup{∥Bx∥2 : x ∈Rn , ∥x∥2 = 1}. (3.31)

Công thức tính ∥B∥2 khá phức tạp, và ta sẽ không nêu cụ thể ở đây. Tuy
nhiên, nếu B = [b j k ] thì có thể chứng minh được

∥B∥2 ≤

 

n
∑

j ,k=1

|b j k |2
!

1
2

. (3.32)

Vế phải của (3.32) thường được gọi là chuẩn Frobenius của B .

Sau đây là một định lí cho điều kiện đủ để dãy lặp trong phương pháp
lặp đơn là hội tụ.

Định lí 3.4:

Giả sử p =∞, p = 1, hoặc p = 2. Nếu ∥B∥p < 1 thì phương trình (3.17)
có nghiệm duy nhất, kí hiệu α. Hơn nữa, với mọi x(0) ∈Rn phương
pháp lặp (3.18), (3.19) hội tụ tới α. Hơn nữa, ta có các đánh giá sai
số như sau:

(i) Đánh giá hậu nghiệm:

∥x(k )−α∥p ≤
∥B∥p

1−∥B∥p
∥x(k )−x(k−1)∥p .

(ii) Đánh giá tiên nghiệm:

∥x(k )−α∥p ≤
∥B∥k

p

1−∥B∥p
∥x(1)−x(0)∥p .
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Chứng minh. Giả sử α là một nghiệm của hệ: α= Bα+ c. Khi đó,




x(m+1)−α






p
=




(Bx(m )+ c)− (Bα+ c)






p

=




Bx(m )−Bα






p

=




B (x(m )−α)






p

≤ ∥B∥p





x(m )−α






p
. (3.33)

Từ đây, bằng quy nạp, ta chứng minh




x(k )−α






p
≤ ∥B∥k

p





x(0)−α






p
. (3.34)

Thật vậy, rõ ràng (3.34) đúng với k = 0. Giả sử nó đúng với k =m , tức là




x(m )−α






p
≤ ∥B∥m

p





x(0)−α






p
. (3.35)

Ta cần chứng minh nó đúng với k =m +1. Áp dụng (3.33)




x(m+1)−α






p
≤ ∥B∥p





x(m )−α






p

≤ ∥B∥p

�

∥B∥m
p





x(0)−α






p

�

(giả thuyết qui nạp)

= ∥B∥m+1
p





x(0)−α






p
.

Vậy, theo nguyên lý qui nạp, ta kết luận (3.34) đúng với mọi k = 1, 2, . . ..
Cho k →∞ trong (3.34), chú ý rằng, ∥B∥k

p → 0 vì ∥B∥p < 1, nên theo
nguyên lý giới hạn bị kẹp ta thu được





x(k )−α






p
→ 0 khi k →∞.

Theo Hệ quả 3.3, dãy các vectơ x(k ) hội tụ tới α trong Rn . Đây chính là kết
luận đầu tiên của định lí.

Để chứng minh các đánh giá sai số, ta áp dụng (3.33) cho k =m +1 và
bất đẳng thức tam giác như sau.





x(k )−α






p
≤ ∥B∥p





x(k−1)−α






p

= ∥B∥p





x(k−1)−x(k )+x(k )−α






p

≤ ∥B∥p

�




x(k−1)−x(k )






p
+




x(k )−α






p

�

.

Từ đây, ta dễ dàng suy ra

(1−∥B∥p )




x(k )−α






p
≤ ∥B∥p

�




x(k−1)−x(k )






p

�

.

Chia hai vế cho (1−∥B∥p )> 0, ta thu được đánh giá sai số hậu nghiệm.
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Để chứng minh đánh giá tiên nghiệm, ta chú ý rằng với k ≥ 2,




x(k )−x(k−1)






p
=




(Bx(k−1)+ c)− (Bx(k−2)+ c)






p

=




Bx(k−1)−Bx(k−2)






p

=




B
�

x(k−1)−x(k−2)
�





p

≤ ∥B∥p





x(k−1)−x(k−2)






p
.

Từ đó, lập luận theo quy nạp như trên, ta thu được




x(k )−x(k−1)






p
≤ ∥B∥k−1

p





x(1)−x(0)






p
.

Kết hợp bất đẳng thức này với đánh giá hậu nghiệm, ta thu được đánh giá
tiên nghiệm.

Cuối cùng, ta chứng minh sự tồn tại và duy nhất của nghiệm của (3.17).
Theo công thức nghiệm Cramer, ta chỉ cần chứng minh I −B là ma trận
không suy biến (I là ma trận đơn vị cấp n). Theo chứng minh ở trên, vì
giới hạn của một dãy (nếu có) là duy nhất nên nghiệm α của phương trình
(3.17), nếu tồn tại, là duy nhất. Đặc biệt, với c= 0, hệ phương trình (3.17)
được đưa về dạng x= Bx có nghiệm x= 0 và nghiệm này là duy nhất. Từ
đó, ta suy ra I −B phải là ma trận không suy biến, và do đó, phương trình
(3.17) có nghiệm.

Ví dụ 3.5. Đưa phương trình sau đây về dạng x= Bx+ c sao cho B là một
ma trận có chuẩn ℓ∞ bé hơn 1, ∥B∥∞ < 1.







3x1− x2+ x3 = 1

3x1+6x2+2x3 = 0

3x1+3x2+7x3 = 4.

(3.36)

Lời giải

Từ phương trình thứ nhất, ta giải ra được

x1 =
1

3
x2−

1

3
x3+

1

3
.

Giải các phương trình thứ hai và thứ 3, ta cũng thu được

x2 =−
1

2
x1−

1

3
x3

và

x3 =−
3

7
x1−

3

7
x2+

4

7
.
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Kết hợp 3 phương trình trên, chúng ta thu được phương trình dạng x =
Bx+ c, như sau:





x1

x2

x3



=





0 1
3 − 1

3
− 1

2 0 − 1
3

− 3
7 − 3

7 0





︸ ︷︷ ︸

B





x1

x2

x3



+





1
3
0
4
7





︸︷︷︸

c

.

Từ đây, dễ dàng tính được chuẩn của ∥B∥∞ = 6
7 .

Nhận xét 3.1. Trong Ví dụ 3.5, ta đã lần lượt giải xi từ phương trình thứ i ,
với điều kiện ai i ̸= 0 để đưa phương trình về dạng x= Bx+ c. Phương pháp
này luôn cho ta ma trận B có các phần tử trên đường chéo chính bằng 0.
Ma trận B thu được bằng phương pháp trên có chuẩn bé hơn 1 nếu ma
trận A trong hệ ban đầu thỏa mãn điều kiện đường chéo trội (diagonally
dominant condition). Nếu A không thỏa mãn điều kiện đường chéo trội,
thì ma trận B thu được có chuẩn lớn hơn hoặc bằng 1 và có thể xảy ra tình
huống phương pháp lặp không hội tụ.

Một chú ý khác là trong phương pháp lặp đơn, chúng ta không nhất
thiết giải xi từ phương trình thứ i như trong phương pháp trên. Điều này
được thể hiện trong thí dụ sau.

Ví dụ 3.6. Dùng phương pháp lặp đơn với ba bước lặp để giải hệ phương
trình







1,02x1−0,05x2−0,10x3 = 1,20

−0,11x1+1,03x2−0,05x3 = 2,25

−0,11x1−0,12x2+1,04x3 = 3,75

(3.37)

Đánh giá các sai số bằng các đánh giá tiên nghiệm và hậu nghiệm.

Lời giải

Đưa hệ trên về dạng x= Bx+ c như sau. Từ phương trình thứ nhất, ta giải
được

x1 =−0,02x1+0,05x2+0,10x3+1,2.

Tương tự, ta cũng đưa phương trình thứ hai và thứ ba về dạng

x2 = 0,11x1−0,03x2+0,05x3+2,25,

x3 = 0,11x1+0,12x2 x2−0,04x3+3,75.

Kết hợp 3 phương trình trên, chúng ta đưa hệ phương trình về dạng x =
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Bx+ c :




x1

x2

x3



=





−0,02 0,05 0,10
0,11 −0,03 0,05
0,11 0,12 −0,04





︸ ︷︷ ︸

B





x1

x2

x3



+





1,2
2,25
3,75





︸ ︷︷ ︸

c

.

Ta chọn x0 =





0
0
0



 và thiết lập công thức

x(k+1) = Bx(k )+ c.

Với k = 0, ta có

x(1) = c=





1,2
2,25
3,75



 .

Tiếp theo, ta tính

x(2) = Bx(1)+ c=





−0,02 0,05 0,10
0,11 −0,03 0,05
0,11 0,12 −0,04









1,2
2,25
3,75



+





1,2
2,25
3,75



 .

Cụ thể hơn, ở thành phần thứ nhất, ta có

x (2)1 = (−0,02 ; 0,05 ; 0,10) · (1,2 ; 2,25 ; 3,75) +1,20

=−0,02×1,2+0,05×2,25+0,10×3,75+1,2= 1,6635.

Tương tự, ta tính được

x (2)2 = 2,502, x (2)3 = 4,002.

Vậy,

x(2) =





1,6635
2,502
4,002



 .

Tiếp tục tính toán, với k = 2, ta có

x(3) = Bx(2)+ c

=





−0,02 0,05 0,10
0,11 −0,03 0,05
0,11 0,12 −0,04









1,6635
2,502
4,002



+





1,2
2,25
3,75



=





1,6120
2,5580
4,0731



 .

Giả sử ta xem x(3) là một xấp xỉ của nghiệm. Để đánh giá sai số, ta cần tính
chuẩn của ma trận B . Dễ thấy

∥B∥∞ = 0,27.
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Vì ∥B∥< 1 nên hệ phương trình có nghiệm duy nhất. Gọi α là nghiệm duy
nhất của hệ trên. Nếu sử dụng đánh giá tiên nghiệm, ta thu được

∥x(3)−α∥∞ ≤
∥B∥3

∞
1−∥B∥∞

∥x(1)−x(0)∥∞ =
0,273

1−0,27
∥x(1)∥∞

=
0,273

1−0,27
×3,75< 0,11.

Nếu sử dụng đánh giá hậu nghiệm, ta có

∥x(3)−α∥∞ ≤
∥B∥∞

1−∥B∥∞
∥x(3)−x(2)∥∞ =

0,27

1−0,27
×0,2032< 0,08.

Như vậy, đánh giá hậu nghiệm cho một đánh giá gần hơn với thực tế so với
đánh giá tiên nghiệm.

3.3 Phương pháp lặp Seidel

Mục này trình bày về một phương pháp lặp Seidel7 để giải các hệ phương
trình tuyến tính. Tài liệu tham khảo: P. K. Anh [2, §VII.6], Kreyszig [9, §20.3].

Xét hệ phương trình dạng (3.17). Phương pháp lặp Seidel bắt đầu bằng
việc phân tích ma trận B dưới dạng

B = L +U ,

với L là ma trận tam giác dưới với mọi phần tử trên đường chéo chính bằng
0 và U là ma trận tam giác trên. Cụ thể hơn, nếu B = [Bi j ] thì

L =









0 0 . . . 0
b21 0 . . . 0

...
...

...
...

bn1 bn2 . . . 0









, U =









b11 b12 . . . b1n

0 b22 . . . b2n
...

...
...

...
0 0 . . . bnn









.

Tiếp theo, dãy lặp được thiết lập theo công thức

x(k+1) = Lx(k+1)+U x(k )+ c. (3.38)

Mặc dù ở cả hai vế của công thức trên đều chứa x(k+1) nhưng do L có dạng
tam giác dưới nên việc tính x(k+1) khi biết x(k ) có thể được thực hiện tuần
tự từ thành phần thứ nhất đến thành phần thứ n . Để mô tả kĩ hơn, ta viết

7Philipp Ludwig von Seidel (1821–1896) là một nhà toán học Đức.
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công thức lặp theo từng thành phần như sau:

x (k+1)
1 =

n
∑

j=1

b1 j x (k )j + c1,

x (k+1)
2 = b21 x (k+1)

1 +
n
∑

j=2

b2 j x (k )j + c2,

· · · · · ·

x (k+1)
i =

i−1
∑

j=1

bi j x (k+1)
j +

n
∑

j=i

bi j x (k )j + ci ,

· · · · · ·

x (k+1)
n =

n−1
∑

j=1

bn j x (k+1)
j + bnn x (k )n + cn .

Phương pháp lặp Seidel khác với phương pháp lặp đơn ở chỗ các thành
phần x (k+1)

j , j = 1, 2 . . . , i −1 vừa tính được lại được dùng để tính x (k+1)
i .

3.3.1 Sự hội tụ của phương pháp lặp Seidel

Để nghiên cứu tính hội tụ cũng như đánh giá sai số trong phương pháp
Seidel, ta cần bổ đề sau.

Định lí 3.5:

Cho B là một ma trận vuông cỡ n ×n . Với mỗi i = 1, 2, . . . , n , ta đặt

r1 = 0, ri =
i−1
∑

j=1

|bi j | với i ≥ 2,

và

si :=
n
∑

j=i

|bi j | với i ≥ 1.

Nếu ∥B∥∞ < 1 thì

µ := max
1≤i≤n

�

si

1− ri

�

< ∥B∥∞.
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Chứng minh. Vì ∥B∥∞ < 1 và ri ≥ 0 nên ta có

si + ∥B∥∞ri ≤ si + ri =
n
∑

j=1

|bi j | ≤ max
1≤l≤n

n
∑

j=1

|bl j |= ∥B∥∞.

Từ đây, ta dễ dàng thu được

si

1− ri
≤ ∥B∥∞, i = 1, 2, . . . , n .

Từ đây và định nghĩa của µ ta dễ dàng suy ra điều phải chứng minh.

Định lí 3.6:

Giả sử ∥B∥∞ < 1 và µ được định nghĩa như trong bổ đề 3.5. Khi đó,
dãy lặp thiết lập bởi công thức lặp Seidel (3.38) hội tụ tới nghiệm
duy nhất của hệ phương trình x= Bx+ c. Hơn nữa,

(i) (Đánh giá hậu nghiệm) Với mọi k ≥ 1, ta có

∥x(k )−α∥∞ ≤
µ

1−µ
∥x(k )−x(k−1)∥∞. (3.39)

(ii) (Đánh giá tiên nghiệm) Với mọi k ≥ 1, ta có

∥x(k )−α∥∞ ≤
µk

1−µ
∥x(1)−x(0)∥∞. (3.40)

Nhận xét 3.2. Nếu ∥B∥∞ < 1 thì µ≤ ∥B∥∞ và do đó

µk

1−µ
≤
∥B∥k

∞
1−∥B∥∞

.

Như vậy, ta có thể thay µ bởi ∥B∥∞ trong các đánh giá tiên nghiệm và hậu
nghiệm đã nói ở trên.

Chứng minh. Bởi định lí 3.4, phương trình (3.17) có nghiệm duy nhất, gọi
là α. Vậy,

αi =
n
∑

j=1

bi jα j + ci .
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Do đó,

x (k+1)
i −αi =

 

i−1
∑

j=1

bi j x (k+1)
j +

n
∑

j=i

bi j x (k )j + ci

!

−

 

n
∑

j=1

bi jα j + ci

!

=
i−1
∑

j=1

bi j

�

x (k+1)
j −α j

�

+
n
∑

j=i

bi j

�

x (k )j −α j

�

. (3.41)

Như trong Bổ đề 3.5, ta đặt

ri :=
i−1
∑

j=1

|bi j |, si :=
n
∑

j=i

|bi j |, µ := max
1≤i≤n

�

si

1− ri

�

.

Khi đó, từ (3.41), ta dễ dàng đánh giá được

�

�

�x
(k+1)
i −αi

�

�

�≤
i−1
∑

j=1

�

�bi j

�

�

�

�

�x
(k+1)
j −α j

�

�

�+
n
∑

j=i

�

�bi j

�

�

�

�

�x
(k )
j −α j

�

�

�

≤
i−1
∑

j=1

�

�bi j

�

� max
1≤l≤n

�

�

�x
(k+1)
l −αl

�

�

�+
n
∑

j=i

�

�bi j

�

� max
1≤l≤n

�

�

�x
(k )
l −αl

�

�

�

= ri





x(k+1)−α






∞+ si





x(k )−α






∞ . (3.42)

Mặt khác, theo định nghĩa của chuẩn ∥ · ∥∞, với mỗi k , có một chỉ số i0 sao
cho





x(k+1)−α






∞ := max
1≤i≤n

�

�

�x
(k+1)
i −αi

�

�

�=
�

�

�x
(k+1)
i0

−αi0

�

�

� .

Vậy, với i = i0, (3.42) có thể viết lại như sau:




x(k+1)−α






∞ ≤ ri0





x(k+1)−α






∞+ si0





x(k )−α






∞ .

Từ đây, ta dễ dàng giải được (vì 0≤ ri0
≤ ∥B∥∞ < 1)





x(k+1)−α






∞ ≤
si0

1− ri0





x(k )−α






∞ ≤µ




x(k )−α






∞ . (3.43)

Lập luận bằng quy nạp như trong chứng minh Định lí 3.4, suy ra




x(m )−α






∞ ≤µ
m




x(0)−α






∞ , m = 0, 1, 2, . . .

Theo Bổ đề 3.5, µ≤ ∥B∥∞ < 1 nên

µm




x(0)−α






∞→ 0 khi m→∞.

Áp dụng định lí giới hạn bị kẹp ta suy ra




x(m )−α






∞→ 0 khi m→∞.

Đó là điều phải chứng minh.
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Ví dụ 3.7. Tìm gần đúng nghiệm của hệ phương trình sau bằng phương
pháp Seidel với 3 bước lặp.







40x1− 2x2+ x3 = 20

x1−40x2+ x3 = 0

x2−20x3 = 30.

(3.44)

Hãy đánh giá sai số của nghiệm gần đúng thu được.

Lời giải

Dễ dàng đưa hệ về dạng






x1 = 0,05x2−0,025x3+0,5

x2 = 0,025x1+0,025x3

x3 = 0,05x2−1,5.

Có thể viết hệ 3 phương trình này về dạng phương trình của vectơ x :=





x1

x2

x3





như sau:




x1

x2

x3



=





0 0,05 −0,025
0,025 0 0,025

0 0,05 0



 ·





x1

x2

x3



+





0,5
0
−1,5



 .

Gọi B là ma trận các hệ số trong vế phải, thì

∥B∥∞ = 0,075< 1.

Do ∥B∥∞ < 1 nên quá trình Seidel hội tụ.

Chọn x(0) =





0
0
0



 và tính các vectơ x(k ), k = 1,2,3, theo công thức lặp

Seidel. Cụ thể, ta có

x (1)1 = 0,05x (0)2 −0,025x (0)3 + c1 = 0,5,

x (1)2 = 0,025x (1)1 +0,025x (0)3 + c2 = 0,0125

x (1)3 = 0,05x (1)2 + c3 =−1,499375.

Tiếp theo, ta tính x(2) theo công thức

x (2)1 = 0,05x (1)2 −0,025x (1)3 + c1 = 0,538109,

x (2)2 = 0,025x (2)1 +0,025x (1)3 + c2 =−0,024032,

x (2)3 = 0,05x (2)2 + c3 =−1,501202.
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Tiếp theo, ta tính x(3) theo công thức

x (3)1 = 0,05x (2)2 −0,025x (2)3 + c1 = 0,536328,

x (3)2 = 0,025x (3)1 +0,025x (2)3 + c2 =−0,024122,

x (3)3 = 0,05x (3)2 + c3 =−1,501206.

Để đánh giá sai số, ta dùng công thức đánh giá hậu nghiệm. Theo hướng
này, ta tính

x(3)−x(2) =−





0,001781
0,000090
0,000004



 ,




x(3)−x(2)






∞ = 0,001781.

Vậy, nếu gọi α=





α1

α2

α3



 là nghiệm thì





x(3)−α






∞ <
∥B∥∞

1−∥B∥∞





x(3)−x(2)






∞ =
0,075

1−0,075
×0,001781

< 0,000144.

Đó là một sai số khá nhỏ.

Nhận xét 3.3. Trong đẳng thức (3.38), ta chuyển Lx(k+1) từ vế phải sang vế
trái và viết

(I − L )x(k+1) =U x(k )+ c.

Vì L là ma trận tam giác dưới với đường chéo chính bằng 0 nên I − L cũng
là ma trận tam giác dưới có hạng tối đại (= n ) vì các phần tử trên đường
chéo chính bằng 1. Từ đó, nhân hai vế với ma trận nghịch đảo (I − L )−1 về
phía bên trái, ta có

x(k+1) = (I − L )−1U x(k )+ (I − L )−1c. (3.45)

Phương trình (3.45) có dạng của phương pháp lặp đơn, x(k+1) = Bx(k )+b,
với

B = (I − L )−1U .

Như vậy, phương pháp lặp Seidel cũng là một trường hợp riêng của phương
pháp lặp đơn, áp dụng cho một dạng tương đương của hệ phương trình
ban đầu.

3.3.2 Một ví dụ: Mô hình Leontief

Trong một số bài toán từ thực tế, hệ phương trình cần giải lại xuất hiện
ngay ở dạng x= Bx+b, chẳng hạn như trong mô hình kinh tế Leontief8. Mô

8Wassily Wassilyovich Leontief (1905–1999) là một nhà kinh tế gốc Xô Viết.
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hình Leontief là một mô hình toán cho một nền kinh tế gồm n ngành sản
xuất, được đánh số từ 1 đến n , mà chúng ta sẽ mô tả vắn tắt như sau: Gọi
xi là giá trị tổng cầu về sản phẩm của ngành thứ i (tổng giá trị sản phẩm
ngành i ) và bi là giá trị cầu cuối cùng (cầu về sản phẩm ngành i từ phía các
hộ tiêu dùng và các nhà xuất khẩu, v.v). Gọi xi k giá trị cầu trung gian, tức là
cầu về sản phẩm ngành i từ phía ngành k hay nói một cách khác là số tiền
mà ngành k bỏ ra mua sản phẩm ngành i làm nguyên liệu đầu vào).

Trong trạng thái cân bằng, chúng ta có công thức tổng cầu về sản phẩm
hàng hóa của ngành:

xi = xi 1+ xi 2+ · · ·+ xi n + bi .

Tỉ phần chi phí đầu vào của ngành k đối với sản phẩm i là tỉ lệ

ai k =
xi k

xk
,

và nó được giả thiết là ổn định. Từ ý nghĩa kinh tế của các biến số, chúng ta
thấy rằng

0≤ ai k ≤ 1.

Ma trận B tạo bởi các yếu tố ai k gọi là ma trận hệ số kĩ thuật của mô hình.
Khi đó, trong trạng thái cân bằng, chúng ta thu được

x= Bx+b,

với ∥B∥1 ≤ 1. Do đó, thay vì đưa về dạng Ax= b với A = I −B , chúng ta có thể
áp dụng trực tiếp các phương pháp lặp cho phương trình cân bằng trong
mô hình Leontief.

CAS 3.4. Giả sử trong một mô hình Leontief có ba ngành sản xuất với ma
trận hệ số kĩ thuật của nó cho bởi

B =





0,1920 0,1144 0,0042
0,2678 0,2656 0,0124
0,0479 0,0741 0,0089



 .

Giả sử cầu bên ngoài là b=
�

5600 1320 2430
�T

. Chúng ta tìm trạng thái
cân bằng của mô hình này bằng phương pháp lặp Seidel thực hiện trong
Rnhư sau:

# Hàm my_seidel() thực hiện lặp theo phương pháp Seidel
# giải hệ phương trình tuyến tính x = B x + c

my_seidel <- function(B, c, tol = 1e-6, max_iter = 1000) {
n <- length(c)
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x <- numeric(n)
for (k in 1:max_iter) {

x_old <- x
x[1] <- c[1] + sum(B[1, 1:n] * x_old[1:n])
for (i in 2:n) {

sum1 <- sum(B[i, 1:i - 1] * x[1:i - 1])
sum2 <- sum(B[i, i:n] * x_old[i:n])
x[i] <- c[i] + sum1 + sum2

}
if (sqrt(sum((x - x_old)^2)) < tol) {

cat("Hội tụ sau", k, "lần lặp.\n")
return(x)

}
}
warning("Không hội tụ sau số lần lặp tối đa.")
return(x)

}

# Áp dụng my_seidel() cho ví dụ trên.

B <- matrix(c(0.1920, 0.1144, 0.0042,
0.2678, 0.2656, 0.0124,
0.0479, 0.0741, 0.0089), byrow = T, nrow = 3)

c <- c(5600, 1320, 2430)
solution <- my_seidel(B, c, 0.01, 1000)

## Hội tụ sau 14 lần lặp.

print(solution)

## [1] 7601,65476 4622,77547 3164,83394

Kết quả thu được là nghiệm của hệ phương trình x= Bx+b.

3.4 Câu hỏi và bài tập

1. Cho các vectơ sau đây:

x=





1
1,5
−5



 , y=





3
2
−6



 .

Tính các chuẩn ℓ1, ℓ∞ và ℓ2 của các vectơ x, y, và x−y.
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2. Cho các ma trận sau

A =





1 4 −2
−2 0 1
0 1 2



 , B =





−1 8 3
2 −0,5 1
−0,2 4 2



 .

Tính ∥A∥1,∥A∥∞,∥B∥1,∥B∥∞.

3. Giải hệ phương trình dạng tam giác sau đây.






2x1+ x2− x3 = 7

x2− x3 = 2

3x3 = 6

4. Giải hệ phương trình sau đây bằng phương pháp khử Gauss.






2x1+ x2− x3 = 3

x1− x2+2x3 = 2

3x1−2x2+ x3 =−1

5. Xét hệ phương trình Ax= b với

A =





4 0,24 −0,08
0,09 3 −0,15
0,04 −0,08 4



 , x=





x1

x2

x3



 , b=





8
9

20



 .

(a) Biến đổi hệ này về dạng x = Bx+ c, với b là một vectơ cột và B là
một ma trận cấp 3×3 thỏa mãn ∥B∥1 < 1.

(b) Dùng kết quả của (a), xây dựng dãy lặp

x(k+1) = Bx(k )+ c, x(0) = (0,0,0)T .

(T kí hiệu phép chuyển vị). Tính x(3).
(c) Gọi α là nghiệm đúng của hệ. Hãy ước lượng sai số ∥x(3)−α∥1.

6. Cho hệ phương trình






10x1+ x2− 5x3 =−5

x1−20x2− x3 =−8

x1+ x2+15x3 = 40

(a) Đưa hệ phương trình về dạng x= Bx+ c, với x=





x1

x2

x3



 sao cho B là

một ma trận cấp 3× 3 có chuẩn bé hơn 1: ∥B∥∞ < 1. Tính chuẩn
∥B∥∞.
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(b) Chọn x(0) =





1
1
1



. Tính các xấp xỉ x(1), x(2) theo phương pháp lặp Seidel

cho hệ phương trình x= Bx+ c trong phần (a).

7. Giải gần đúng hệ sau đây bằng phương pháp Seidel với sai số ε= 0,05.






5x1− x2+2x3 = 6

x1−4x2+ x3 =−2

−2x1− x2+4x3 = 1

8. Cho ma trận

B =
�

−0,6 0,6
0,4 0,2

�

.

(a) Tính ∥B∥∞, ∥B∥1, và ∥B∥2.

(b) Chứng minh rằng với mọi x(0) ∈R2, dãy lặp đơn

x(k+1) = Bx(k )+ c

hội tụ tới nghiệm duy nhất của hệ phương trình x= Bx+ c.
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Chương4
Đa thức nội suy và xấp xỉ đa
thức

Chương này trình bày về nội suy đa thức bằng công thức Lagrange và công
thức Newton, nội suy hàm ghép trơn bậc ba (cubic spline), và xấp xỉ bằng
phương pháp bình phương bé nhất (least squares method).
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4.6.3 Xấp xỉ bằng các hàm luỹ thừa . . . . . . . . . . . . . . . . . . 143
4.6.4 Xấp xỉ bằng hàm số mũ . . . . . . . . . . . . . . . . . . . . . . 146

4.7 Câu hỏi và bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.1 Bài toán nội suy, đa thức nội suy

Dưới đây, chúng ta tìm hiểu các kiến thức cơ bản về đa thức, bài toán nội
suy, đa thức nội suy, các công thức nội suy, tính giá trị đa thức bằng lược đồ
Horner. Tài liệu tham khảo: T. V. Đĩnh [6, §4.1], P. K. Anh [2, §II.1], Kreyszig
[9, §19.3].

4.1.1 Bài toán nội suy

Giả sử chúng ta quan sát hai đại lượng x và y , với y là một hàm số của đối
số x ∈ [a , b ]. Tại n +1 điểm x0, x1, . . . , xn , với

a ≤ x0 < x1 < · · ·< xn ≤ b ,

ta quan sát được các giá trị tương ứng là y0, y2, . . . , yn . Vấn đề đặt ra là từ các
quan sát đó có thể tìm ra được mối liên hệ giữa x và y hay không? Theo
ngôn ngữ toán học, nó có nghĩa là có thể tìm ra một hàm số f : [a , b ]→R
sao cho

f (xi ) = yi , i = 0, 1, 2, . . . , n (4.1)

hay không?
Nếu không có các yêu cầu thêm nào đối với hàm f thì có vô số hàm số

f thỏa mãn điều kiện như vậy. Vì vậy, người ta thường tìm f trong một lớp
các hàm đã biết như các đa thức, hàm lượng giác, v.v. Trong mục này, ta sẽ
tìm hiểu vấn đề xác định một đa thức Pn có bậc bé hơn hoặc bằng n sao
cho

Pn (xi ) = yi , i = 0, 1, 2, . . . , n . (4.2)

Vấn đề này gọi là vấn đề nội suy đa thức (polynomial interpolation).

4.1.2 Sự tồn tại và duy nhất của đa thức nội suy

Định lí sau đây cho điều kiện về sự tồn tại của các đa thức nội suy.

Định lí 4.1: Tồn tại và duy nhất

Với mọi bộ n +1 giá trị (y0, y1, . . . , yn ), tồn tại duy nhất một đa thức Pn

với bậc không vượt quá n (deg Pn ≤ n) sao cho

Pn (xi ) = yi , i = 0, 1, 2, . . . , n . (4.3)
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Đa thức Pn thỏa mãn (4.3) gọi là đa thức nội suy của hàm số f (x ) tại các
điểm nội suy x0, . . . , xn . Dễ dàng chứng minh được tính duy nhất của đa
thức nội suy trong định lí 4.1. Thật vậy, ta giả sử P (x ) và Q (x ) cùng thỏa
mãn

P (xi ) = yi , Q (xi ) = yi , i = 0, 1, 2, . . . , n .

Khi đó, R (x ) := P (x )−Q (x ) là một đa thức với bậc không vượt quá n thỏa
mãn

R (xi ) = 0, i = 0, 1, 2, . . . , n .

Như vậy, R (x ) là đa thức bậc không vượt quá n và có n +1 nghiệm nên nó
phải là đa thức 0. Tức là P (x ) =Q (x ); tính duy nhất được chứng minh.

Điều kiện tồn tại trong định lí 4.1 là hệ quả của tính duy nhất của đa
thức nội suy. Thật vậy, bài toán tìm đa thức nội suy có thể đưa về bài toán
tìm các hệ số a0, a1, . . . , an sao cho

a0+a1 x j +an x n
j = yj , j = 0, 1, . . . , n .

Chúng lập thành một hệ phương trình tuyến tính gồm n +1 phương trình
của n +1 ẩn số a0, a1, . . . , an , có thể viết dưới dạng ma trận như sau:









1 x0 x 2
0 · · · x n

0
1 x1 x 2

1 · · · x n
1

...
...

...
...

...
1 xn x 2

n · · · x n
n

















a0

a1
...

an









=









y0

y1
...

yn









. (4.4)

Sự tồn tại và duy nhất của đa thức nội suy tương đương với sự tồn tại và
duy nhất nghiệm của hệ phương trình tuyến tính (4.4).

Như đã chứng minh, hệ (4.4) không có quá một nghiệm. Nói riêng, hệ
phương trình tuyến tính thuần nhất tương ứng với (4.4) chỉ có nghiệm tầm
thường. Do đó, định thức của ma trận hệ số trong vế trái của (4.4) phải
khác không và vậy thì hệ (4.4) có nghiệm duy nhất với mọi bộ (yj ).

Chú ý 4.1. Ma trận hệ số trong vế trái của (4.4) gọi là ma trận Vander-
monde1, kí hiệu V . Định thức det(V ) của nó được gọi là định thức Vander-
monde. Bằng tính toán cụ thể,

det(V ) =
∏

0≤i< j≤n

(x j − xi ).

Từ đó có thể thấy định thức này khác không khi các điểm x j phân biệt.

CAS 4.1. Dựa trên các phân tích trên, chúng ta xây dựng cách tính đa thức
nội suy dựa vào hệ phương trình (4.4). Với một dãy các điểm x , chúng ta
lập ma trận Vandermonde tương ứng. Các hệ số của đa thức nội suy được

1Alexandre-Théophile Vandermonde (28/2/1735 – 1/1/1796) là một nhà toán học người Pháp.
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tính bằng cách vận dụng hàm solve() có sẵn trong R để giải hệ phương
trình (4.4).

# vandermonde() tạo ma trận Vandermonde cỡ n tại giá trị x.

vandermonde <- function(x) {
n = length(x)

# Khởi tạo một ma trận 1 cột với các phần tử 1
A = matrix(data = 1, n, 1)

# Vòng lặp "for" xây dựng các cột tiếp theo của
# định thức Vandermonde
for (i in 1:(n - 1)) {

A = cbind(A, A[, i] * x)
}
return(A)

}

# polycalc() tính các hệ số của đa thức nội suy.
polycalc <- function(x, y) {

# Tính ma trận Vandermonde của dữ liệu x
A = vandermonde(x)
if (det(A) == 0) {

stop("Định thức Vandermonde triệt tiêu.")
}

# Giải hệ Ac = y bằng solve() có sẵn
c = solve(A, y)
return(c)

}

# Ví dụ

x <- c(-1, 0, 2, 3)
y <- c(14, 24, 80, 342)
polycalc(x, y)

## [1] 24 -20 -12 18

Mặc dù chương trình R phía trên cho kết quả chính xác đối với dữ liệu
trong ví dụ trên, nó có thể cho kết quả với sai số lớn khi các dữ liệu đầu
vào “xấu”. Trong mục sau, chúng ta sẽ tìm hiểu các cách xây dựng hai biểu
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diễn đa thức nội suy hiệu quả hơn, đó là hai công thức nội suy Lagrange2

và nội suy Newton.

4.1.3 Tính giá trị của đa thức: Lược đồ Horner

Giả sử chúng ta cần tính giá trị một đa thức, chẳng hạn

p (x ) = 18x 3−12x 2−20x +24,

tại x = 2,5. Rõ ràng, chúng ta có thể tính các luỹ thừa x i , i = 1,2,4, của
x = 2,5, nhân các kết quả với các hệ số tương ứng, và cộng tất cả các kết
quả lại. Quá trình này có thể thực hiện trong ngôn ngữ R như sau:

# poly.eval() tính giá trị của đa thức.

poly.eval <- function(a, x) {
n <- length(a)
t <- numeric(n) + 1

# Tính các luỹ thừa của x và đưa vào t.

for (i in 1:(n-1)) {
t[i + 1] = t[i] * x

}

# Tính tổng của tích các luỹ thừa và hệ số tương ứng.

w <- sum(a * t)
return(w)

}

# Ví dụ

a <- c(24, -20, -12, 18)
x <- 2.5
poly.eval(a, x)

## [1] 180,25

Kết quả thu được p (2,5) = 180,25 sau một số bước tính toán với 5 phép
nhân. Cách tính trên nhìn chung không hiệu quả do cần khá nhiều phép
tính, đặc biệt là phép nhân. Dưới đây, chúng ta nói về lược đồ Horner để
tính giá trị của đa thức.

2Joseph-Louis Lagrange (1736 – 1813) là nhà toán học người Italy.
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Lược đồ Horner

Trong mục này, chúng ta nói về lược đồ Horner3 (Horner’s Scheme) để tăng
hiệu quả tính toán trong vấn đề tính giá trị đa thức.

Ý tưởng của lược đồ Horner trong tính toán giá trị của các đa thức có
thể được minh hoạ trong sơ đồ sau:

p (x0) = 24+ x0(−20+ x0(−12+18x0
︸ ︷︷ ︸

w2

)

︸ ︷︷ ︸

w1=−20+w2 x0

)

︸ ︷︷ ︸

w0=24+w1 x0

.

Người ta gọi dạng của đa thức trong vế phải của đẳng thức trên là “dạng
lồng nhau” (nested form) của đa thức p (x ). Khi được viết ở dạng này, việc
tính toán được thực hiện từ trong ra ngoài theo quy tắc sau:

w3 = 18,

w2 =−12+w3 x0,

w1 =−20+w2 x0,

w0 = 24+w1 x0.

Thay số x0 = 2,5 và tính toán cụ thể, chúng ta thu được

w3 = 18,

w2 =−12+18×2,5= 33,

w1 =−20+33×2,5= 62,5,

w0 = 24+62,5×2,5= 180,25.

Khi đó,
p (x0) =w0 = 180,25

là giá trị cần tính (như trên), thu được sau 3 phép nhân và 3 phép cộng.
Tổng quát, đối với một đa thức

p (x ) = an x n +an−1 x n−1+ · · ·+a1 x +a0,

chúng ta sẽ tính một dãy w0, w1, . . . , wn , bắt đầu từ wn và đi ngược về w0

như sau:

wn = an ,

wn−1 = an−1+wn x0,

· · ·= · · ·
w1 = a1+w2 x0,

w0 = a0+w1 x0.

3William George Horner (9/6/1786 – 22/9/1837) là một nhà toán học người Anh.
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Khi đó, từ các giá trị wi , chúng ta tính được thương và phần dư của phép
chia đa thức p (x ) cho nhị thức bậc nhất x − x0 như sau:

p (x ) =w0+ (x − x0)
n
∑

i=1

wi x i−1.

Nói riêng, giá trị của p (x ) tại x = x0 là

p (x0) =w0.

Khi tính toán bằng tay, lược đồ Horner thường được ghi dưới dạng một
bảng số với 3 hàng như sau:

an an−1 an−2 . . . a0

x0wn x0wn−1 . . . x0w1

wn = an wn−1 wn−2 . . . w0 = p (x0)

Ở hàng trên cùng, chúng ta viết các hệ số của đa thức. Ở hàng thứ 3, chúng
ta bắt đầu với wn = an , sau đó tính x0wn và viết kết quả vào hàng thứ hai,
cột bên phải của cột wn . Cộng hai giá trị của cột này, ta thu được wn−1. Tiếp
tục làm như vậy cho cột wn−1, . . . .

Ví dụ 4.1. Lập lược đồ Horner tính giá trị tại x0 = 2,5 của đa thức bậc 4 sau
đây:

p (x ) = x 4+20x 3−11x 2−20x +22.

Lời giải

Ta lập bảng cho lược đồ Horner như sau:

1 20 −11 −20 22
2,5 56,25 113,125 232,8125

w4 = 1 22,5 45,25 93,125 254,8125=w0 = p (2,5)

Như vậy, p (2,5) = 254,8125. Hơn nữa,

p (x ) = 254,8125+ (x −2,5)
�

93,125+45,25x +22,5x 2+ x 3
�

.

CAS 4.2. Hãy viết chương trình máy tính để kiểm tra các tính toán trong
Ví dụ 4.1. Lưu ý, trong lược đồ Horner như trên, nếu đặt

wn+1 = 0,

thì, quá trình tính wk trong lược đồ có công thức truy hồi

wk = ak +wk+1 x0, k = n , n −1, · · · , 0.

Do đó, sẽ chỉ cần tạo một vòng lặp để thực hiện công thức truy hồi trên.
Trong R, chúng ta có thể viết như sau:
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# Hàm horner() thực hiện quá trình tính theo lược đồ Horner.

horner <- function(x, a) {

# Khởi tạo các giá trị ban đầu trong lược đồ Horner
n <- length(a)
w <- numeric(n)
w[n] <- a[n]

# Vòng lặp chính trong lược đồ Horner
while (n > 1) {

n <- n - 1
w[n] <- a[n] + w[n + 1] * x

}

# Trả về các giá trị trong lược đồ Horner
return(w)

}

# Áp dụng horner() cho dữ liệu trong ví dụ trên.

a <- c(22, -20, -11, 20, 1)
x <- 2.5
horner(x, a)

## [1] 254,8125 93,1250 45,2500 22,5000 1,0000

Kết quả của horner(x, a) cho dãy các giá trị wi đúng như kết quả đã
tính trong Ví dụ 4.1, với giá trị đầu tiên là giá trị của p (x0).

Các đa thức có thể xuất hiện xấp xỉ các hàm số siêu việt bằng một đa
thức Taylor của nó. Sau đây là một ví dụ.

CAS 4.3. Hãy áp dụng lược đồ Horner cho các tổng riêng của các chuỗi luỹ
thừa, lấy khai triển Taylor của hàm y = sin(x ) làm ví dụ. Nhắc lại rằng, các
đa thức Taylor của hàm số sin có dạng

sin(x ) = x −
1

3!
x 3+

1

5!
x 5−

1

7!
x 7+ · · ·

Chương trình R sau đây tính giá trị của các đa thức Taylor thứ 11 của hàm
sin(x ) tại các giá trị x1 = 0,1; x2 = 0,2; . . . ; x5 = 0,5. Lưu ý, trong đoạn mã sau,
hàm horner2() đơn giản hơn đoạn mã phía trên do chúng ta chỉ giữa lại
giá trị cuối cùng trong lược đồ Horner.
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# Hàm horner2() tính giá trị của đa thức bằng lược đồ Horner.

horner2 <- function(x, a) {
n <- length(a)
w <- 0
while (n > 0) {

w <- a[n] + w * x
n <- n - 1

}
return(w)

}

# Tính hệ số của đa thức Taylor của hàm sin(x)

taylor_series_sine <- function(truncation) {
a <- numeric(truncation)
i <- 2
a[i] <- 1
while (i < truncation - 2) {

a[i + 2] <- - a[i] / (i * (i + 1))
i <- i + 2

}
return(a)

}

# Tính giá trị của đa thức Taylor thứ 11 của hàm sin(x)

n <- 12
coeffs <- taylor_series_sine(n)
x <- seq(0.1, 0.4, by = 0.1)
horner2(x, coeffs)

## [1] 0,0998334166 0,1986693308 0,2955202067 0,3894183423

Kết quả là các giá trị gần đúng của sin(xi ), i = 1,2,3,4 chính xác tới ít
nhất 10 chữ số thập phân.

4.2 Đa thức nội suy Lagrange

Trong mục này, chúng ta nói về công thức nội suy Lagrange. Tài liệu tham
khảo: T. V. Đĩnh [6, §4.1], P. K. Anh [2, §II.2], Kreyszig [9, §19.3].

Nghiệm của bài toán nội suy (4.3) với vế phải y0, y1, . . . , yn tổng quát có
thể được xây dựng bằng cách “chồng chất” các nghiệm của bài toán với vế
phải đơn giản hơn. Cụ thể hơn, gọi ℓi (x ) là đa thức bậc không vượt quá n
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sao cho

ℓi (x j ) =

�

1 nếu j = i ,

0 nếu j ̸= i .
(4.5)

Nói cách khác, ℓi là nghiệm của bài toán (4.1) với yi = 1 và yj = 0 với j ̸= i .
Các đa thức ℓi (x ) được gọi là các đa thức nội suy cơ bản bậc n ứng với

các nút nội suy x0, x1, . . . , xn .

Định lí 4.2: Công thức nội suy Lagrange

Đặt P (x )

P (x ) =
n
∑

i=0

yi ℓi (x ) = y0ℓ0(x ) + y1ℓ1(x ) + · · ·+ ynℓn (x ).

Khi đó, P (x ) là một đa thức nội suy các giá trị y0, y1, . . . , yn , có nghĩa
là P (x ) là đa thức bậc không vượt quá n thoả mãn P (xi ) = yi với
i = 0, 1, . . . , n .

Chứng minh. Rõ ràng P (x ) có bậc không vượt quá n , vì mỗi số hạng là một
bội số của một đa thức ℓk , 0≤ k ≤ n , có bậc không vượt quá n .

Mặt khác, với mỗi k , ta có ℓi (xk ) = 0 trừ khi i = k . Do đó,

P (xk ) = y0ℓ0(xk ) + y1ℓ1(xk ) + · · ·+ ynℓn (xk ) = ykℓk (xk ) = yk .

Từ đó ta suy ra P (x ) như trên là đa thức thỏa mãn yêu cầu P (xk ) = yk với
mọi k = 0, 1, 2, . . . , n , tức là thỏa mãn (4.3).

Vậy, chúng ta cần biết công thức cụ thể cho các đa thức nội suy cơ bản
ℓi , i = 0, 1, 2, . . . , n . Chúng được cho bởi công thức (4.6) trong định lí sau đây.

Định lí 4.3:

Đa thức duy nhất ℓi thỏa mãn (4.5) được cho bởi công thức

ℓi (x ) =
∏

0≤k≤n ,k ̸=i

x − xk

xi − xk
. (4.6)

Chứng minh. Vế phải của (4.6) là tích của n nhân tử bậc nhất nên ℓi là đa
thức bậc n . Lấy j tùy ý. Nếu j ̸= i thì có

ℓi (x j ) =
∏

0≤k≤n ,k ̸=i

x j − xk

xi − xk
= 0,
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vì vế phải là một tích trong đó có một nhân tử bằng 0 (nhân tử tương ứng
với chỉ số k = j . Còn nếu j = i thì rõ ràng

ℓi (xi ) =
∏

0≤k≤n ,k ̸=i

xi − xk

xi − xk
= 1,

vì mọi nhân tử ở vế phải bằng 1. Vậy ℓi thỏa mãn (4.5).

Ví dụ 4.2 (Nội suy bậc nhất). Với n = 1, ta có n +1= 2 nút nội suy x0 và x1.
Hai đa thức Lagrange cơ bản là

ℓ0(x ) =
x − x1

x0− x1
, ℓ1(x ) =

x − x0

x1− x0
.

Đa thức nội suy bậc nhất tại các nút x0, x1 với các giá trị tương ứng y0, y1 là

P1(x ) = y0ℓ0(x ) + y1ℓ1(x ) = y0
x − x1

x0− x1
+ y1

x − x0

x1− x0
.

Ví dụ 4.3 (Nội suy bậc hai). Với n = 2, ta có n +1= 3 nút nội suy x0, x1, x2.
Với các giá trị tương ứng y0, y1, y2 tại các nút này, đa thức nội suy là

P2(x ) = y0
(x − x1)(x − x2)
(x0− x1)(x0− x2)

+ y1
(x − x0)(x − x2)
(x1− x0)(x1− x2)

+ y2
(x − x0)(x − x1)
(x2− x0)(x2− x1)

.

Ví dụ 4.4. Cho n = 3 và n +1= 4 nút nội suy x0, x2, x2, và x3. Viết công thức
tường minh của đa thức nội suy cơ bản ℓ2(x ).

Lời giải

Đa thức nội suy cơ bản ℓ2(x ) là tích của các nhân tử (x − x j )/(x2 − x j ), với
j = 0, 1, . . . , 3, j ̸= 2. Vậy,

ℓ2(x ) =
x − x0

x2− x0
·

x − x1

x2− x1
·

x − x3

x2− x3
.

Ví dụ 4.5. Tìm đa thức bậc hai P2(x ) có giá trị trùng với hàm y = 5x tại các
điểm x0 =−1, x1 = 0, và x2 = 1.

Lời giải

Ta có 3 điểm nội suy phân biệt nên đa thức bậc hai P2(x ) được xác định duy
nhất và có thể biểu diễn qua 3 đa thức nội suy Lagrange cơ bản

ℓ0(x ) =
(x − x1)(x − x2)
(x0− x1)(x0− x2)

=
(x −0)(x −1)
(−1)× (−2)

=
1

2
x 2−

1

2
x ,

ℓ1(x ) =
(x − x0)(x − x2)
(x1− x0)(x1− x2)

=
(x − (−1))(x −1)
(0− (−1))× (0−1)

=−x 2+1,

ℓ2(x ) =
(x − x0)(x − x1)
(x2− x0)(x2− x1)

=
(x − (−1))(x −0)
(1− (−1))× (1−0)

=
1

2
x 2+

1

2
.
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Vì P2(x ) có giá trị trùng với y = 5x tại các điểm x0, x1 và x2, nên ta có

P2(x ) = y0ℓ0(x ) + y1ℓ1(x ) + y2ℓ2(x )

=
1

5

�

1

2
x 2−

1

2
x
�

+
�

−x 2+1
�

+5
�

1

2
x 2+

1

2

�

=
8

5
x 2+

12

5
x +1.

Đó là tam thức bậc hai cần tìm.

CAS 4.4. Dưới đây, chúng ta viết chương trình R minh hoạ quá trình tính
toán giá trị của đa thức nội suy Lagrange và áp dụng vào bộ dữ liệu sau.

x −1 0 1 2

y −1 4 15 50

Quá trình tính được chia làm 2 bước: Đầu tiên, chúng ta tính giá trị của
các đa thức Lagrange cơ sở. Sau đó, chúng ta tính giá trị của đa thức nội
suy tuỳ ý bằng công thức nội suy Lagrange.

# lagrange_base() tính giá trị của các đa thức nội suy Lagrange
# cơ bản đối với các nút nội suy x tại một điểm xi cho trước.

lagrange.base <- function(x, xi) {
n = length(x)
t = numeric(n) + 1

# Hai vòng lặp lồng nhau tính giá trị của đa thức
# nội suy Lagrange cơ sở
for (i in 1:n) {

for (j in 1:n) {
if (j != i) {

p = (xi - x[j])/(x[i] - x[j])
t[i] = t[i] * p

}
}

}
return(t)

}

# lagrange.eval() tính giá trị của đa thức nội suy tổng quát.

lagrange.eval <- function(x, y, xi) {
if (length(x) != length(y)) {

stop("Lỗi! Số nút và số giá trị khác nhau.")
}
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l = lagrange.base(x, xi)

# Trả về tích vô hướng của y và l
return(sum(l * y))

}

# Ví dụ

x <- c(-1, 0, 1, 2)
y <- c(-1, 4, 15, 50)
xi <- 1.2
lagrange.eval(x, y, xi)

## [1] 19,504

Lưu ý, nếu l và y là hai vectơ trong R có độ dài bằng nhau thì l * y là
vectơ thu được bằng cách nhân các thành phần tương ứng của l và y, trong
khi đó sum(l * y) sẽ lấy tổng các thành phần của l * y.

Chú ý 4.2. Chúng ta có thể dùng poly.calc() có sẵn trong gói polynom 4

của phần mềm R để tính toán các đa thức nội suy.

4.3 Đa thức nội suy Newton

Dưới đây, chúng ta tìm hiểu về công thức nội suy Newton cho đa thức nội
suy. Trong trường hợp các mốc nội suy tuỳ ý, công thức nội suy Newton
dựa trên các tỉ sai phân. Khi các mốc nội suy cách đều, chúng ta sẽ có công
thức đẹp hơn, dựa trên các sai phân.

4.3.1 Đa thức nội suy Newton tổng quát

Nếu như trong công thức nội suy Lagrange, đa thức nội suy được viết dưới
dạng một “tổ hợp tuyến tính” của các đa thức Lagrange cơ bản ℓ j (trong
(4.6)), thì trong công thức Newton, đa thức nội suy được viết dưới dạng
một tổ hợp tuyến tính của các đa thức 1, (x − x0), (x − x0)(x − x1), . . . , và
(x − x0)(x − x1) · · · (x − xn−1). Nói cách khác, công thức nội suy Newton sẽ có
dạng

Pn (x ) = A0+A1(x − x0) +A2(x − x0)(x − x1)
+ · · ·+An (x − x0)(x − x1) · · · (x − xn−1), (4.7)

4polynom: A Collection of Functions to Implement a Class for Univariate Polynomial Manipu-
lations, DOI: 10.32614/CRAN.package.polynom
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với A0, A1, . . . , An là các hệ số, chính là toạ độ của Pn (x ) trong một cơ sở của
không gian vectơ các đa thức bậc ≤ n .

Sau đây, chúng ta sẽ tính các hệ số A0, A1, . . . , An , dựa vào các giá trị đã
biết yi của Pn tại các giá trị xi .

Trường hợp có ít điểm nội suy, ta có thể tính các hệ số này trực tiếp mà
không gặp khó khăn gì. Ví dụ, bắt đầu bằng việc thay x = x0 vào (4.16), ta
thu được

y0 = Pn (x0) = A0.

Tiếp tục, thay x = x1 vào (4.16), ta thu được

y1 = Pn (x1) = A0+A1(x2− x0) = y0+A1(x1− x0).

Từ đây, ta tính được

A1 =
y1− y0

x1− x0
. (4.8)

Tương tự như trên, thay x = x2 và các giá trị đã tính được của A0 và A1 vào
(4.16), ta thu được

y2 = Pn (x2) = y0+
y1− y0

x1− x0
(x2− x0) +A2(x2− x0)(x2− x1).

Vì x0, x1 và x2 là khác nhau từng đôi nên (x2− x0)(x2− x1) ̸= 0 và do đó, ta có
thể giải được giá trị A2. Cụ thể hơn thì

y2 = y0+
y1− y0

x1− x0
[(x2− x1) + (x1− x0)]+A2(x2− x0)(x2− x1)

= y1+
y1− y0

x1− x0
(x2− x1) +A2(x2− x0)(x2− x1).

Đẳng thức này tương đương với

y2− y1−
y1− y0

x1− x0
(x2− x1) = A2(x2− x0)(x2− x1)

Chia hai vế cho (x2− x0)(x2− x1), ta thu được

y2− y1

(x2− x0)(x2− x1)
−

y1− y0

(x1− x0)(x2− x0)
= A2.

Đẳng thức cuối cùng có thể viết lại là

A2 =
1

x2− x0

�

y2− y1

x2− x1
−

y1− y0

x1− x0

�

. (4.9)

Quá trình này có thể tiếp tục để tính A3, A4, v.v.
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Nếu hệ các điểm {x0, x1, . . . , xn} là khác nhau từng đôi thì ta luôn giải
được bộ giá trị A0, A1, . . . , An−1. Đó là bởi vì, theo công thức nội suy Lagrange,
đa thức nội suy Pn (x ) luôn tồn tại và thuộc vào không gian vectơ các đa
thức bậc không vượt quá n còn hệ các đa thức

Nn := {1, x − x0, (x − x0)(x − x1), . . . , (x − x0)(x − x1) · · · (x − xn−1)}

lập thành một hệ độc lập tuyến tính gồm n +1 vectơ trong không gian n +1
chiều chứa đa thức nội suy (không gian các đa thức của biến x với bậc
không vượt quá n). Các đa thức trong Nn gọi là các đa thức nội suy Newton.
Điều này có nghĩa là bộ các hệ số (A0, A1, . . . , An ) chính là toạ độ của Pn (x )
trong cơ sở Nn . Do đó, theo một kết quả cơ bản của đại số tuyến tính, bộ số
này tồn tại và duy nhất. Vấn đề còn lại là tìm một thuật toán để tính các
giá trị A3, A4, . . . một cách hiệu quả.

Sau đây, chúng ta xây dựng quá trình tính các hệ số Ak , k = 3,4, . . . , n .
Nếu y = y (x ) thì tỉ hiệu5 của y tại các điểm xi và x j được định nghĩa là

y [xi , x j ] :=
yi − yj

xi − x j
.

Tỉ hiệu cấp hai tại các điểm xi , x j và xk (theo thứ tự đó) là

y [xi , x j , xk ] :=
y [xi , x j ]− y [x j , xk ]

xi − xk
, (4.10)

và tỉ hiệu cấp ba tại các điểm xi , x j , xk , và xl là

y [xi , x j , xk , xl ] :=
y [xi , x j , xk ]− y [x j , xk , xl ]

xi − xl
. (4.11)

Tỉ hiệu cấp cao hơn được xác định tương tự theo truy hồi.
Khái niệm tỉ hiệu cho ta thấy, từ các phương trình (4.8), (4.9), các hệ số

A1, A2 chính là các tỉ hiệu cấp 1 và cấp 2:

A1 = y [x0, x1], A2 = y [x0, x1, x2].

Tiếp theo, ta sẽ chứng minh rằng các hệ số Ak được cho bởi tỉ hiệu cấp k ,
k ≥ 3.

Bây giờ, xét trường hợp y (x ) là hàm đa thức bậc n : y (x ) = Pn (x ). Tỉ hiệu
của Pn (x ) tại điểm (x , x0), xem như là hàm của đối số x , là một đa thức bậc
n −1. Thật vậy, đa thức Q (x ) := Pn (x )−Pn (x0) thỏa mãn Q (x0) = 0, nên theo
định lí Bézout6, Q (x ) chia hết cho x − x0. Do đó, sau khi giản ước nhân tử
(x − x0) ở tử thức và mẫu thức của tỉ hiệu

Pn [x , x0] =
Pn (x )−Pn (x0)

x − x0
,

5Tỉ hiệu (divided difference), một số sách còn gọi là tỉ sai phân.
6Étienne Bézout (1730–1783) là nhà toán học người Pháp.
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chúng ta thu được một đa thức có bậc giảm đi 1, tức là có bậc n −1.
Cũng như vậy, tỉ hiệu cấp hai của Pn là đa thức bậc n −2, . . . . Tiếp tục

như vậy, tỉ hiệu cấp n của Pn là đa thức bậc 0, tức là một hằng số, và tỉ hiệu
cấp n +1 của Pn bằng 0.

Ví dụ 4.6. Giả sử Pn (x ) là một đa thức bậc n , có dạng tổng quát

Pn (x ) = a0+a1 x + · · ·+an x n .

Nếu n = 0 thì Pn (x ) là đa thức hằng số: Pn (x ) = a0, nên tỉ hiệu

Pn [x , x0] = 0.

Nếu n = 1 thì P1(x ) = a0+a1 x . Do đó

P1(x )−P1(x0) = (a0+a1 x )− (a0+a1 x ) = a1(x − x0).

Vậy,

P1[x , x0] =
P1(x )−P1(x0)

x − x0
=

a1(x − x0)
x − x0

= a1.

Với n = 2, P2 có dạng
P2(x ) = a0+a1 x +a2 x 2.

Khi đó,

P2[x , x0] =
(a0+a1 x +a2 x 2)− (a0+a1 x0+a2 x 2

0 )
x − x0

= a2 x +a2 x0+a1.

Tiếp tục tính, chúng ta thu được

P2[x , x0, x1] = a2.

Với n = 1, 2, 3, tỉ hiệu cấp n , Pn [x , x0, . . . , xn−1], của một đa thức cấp n là hằng
số, không phụ thuộc x . Bằng quy nạp, có thể dễ dàng chứng minh được
điều này đúng với mọi n ≥ 1. Chi tiết dành cho bạn đọc.

Từ định nghĩa của tỉ hiệu, chúng ta suy ra

Pn (x ) = Pn (x0) + (x − x0)Pn [x , x0],
Pn [x , x0] = Pn [x0, x1] + (x − x1)Pn [x , x0, x1],

. . .= . . .

Pn [x , x0, . . . , xn−1] = Pn [x0, x1, . . . , xn ]

vì Pn [x , x0, x1, . . . , xn−1] là một hằng số. Thay liên tiếp các đẳng thức này từ
dưới lên, chúng ta thu được kết quả sau:
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Định lí 4.4: Công thức nội suy Newton 1

Nếu Pn (x ) là một đa thức bậc n và x0, x1, . . . , xn là n + 1 điểm phân
biệt thì

Pn (x ) = Pn (x0) +
n
∑

i=1

Pn [x0, . . . , xi ]
i−1
∏

j=0

(x − x j ). (4.12)

Rõ ràng, các thành phần Pn [x0, . . . , xi ] trong vế phải của (4.13) có thể
tính chỉ dựa vào các giá trị Pn (x j ), j = 0, 1, . . . , i . Từ đó, chúng ta suy ra công
thức nội suy Newton như sau:

Định lí 4.5: Công thức nội suy Newton 2

Nếu x0, x1, . . . , xn là n +1 điểm phân biệt và y0 = y (x0), y1 = y (x1), . . . ,
yn = y (xn ) là một bộ n +1 giá trị tương ứng của y thì

pn (x ) := y0+
n
∑

i=1

y [x0, . . . , xi ]
i−1
∏

j=0

(x − x j ) (4.13)

là đa thức nội suy của y tại các nút xi .

Ví dụ 4.7. Giả sử ta biết giá trị của hàm số y = f (x ) tại một số giá trị của
đối số x như sau.

x 1 2 4 5

y 25 36 106 177

Tính đa thức nội suy p3(x ) của y tại các nút nội suy bằng cách dùng công
thức nội suy Newton tiến.

Lời giải

Kí hiệu x0, . . . , x3 là các điểm nội suy và y0, . . . , y3 là các giá trị của y tại các
điểm nội suy đó. Ta tính các tỉ hiệu và viết vào bảng sau:

Nút x y Tỉ hiệu 1 Tỉ hiệu 2 Tỉ hiệu 3

0 1 25 11 8 1
1 2 36 35 12 . . .
2 4 106 71 . . . . . .
3 5 177 . . . . . . . . .
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Ở hàng thứ hai từ cột thứ 3, chúng ta thu được y0, y [x0, x1], y [x0, x1, x2], . . . .
Vậy, đa thức nội suy Newton của hàm số y tại các nút nội suy trên là

p3(x ) = (x −4)(x −2)(x −1) +8(x −2)(x −1) +11(x −1) +25. (4.14)

Lưu ý, chúng ta có thể đơn giản hóa biểu thức ở vế phải, chúng ta thu được

p3(x ) = x 3+ x 2+ x +22.

Tuy nhiên, quá trình này không cần thiết cho việc tính giá trị của đa thức
nội suy.

CAS 4.5. Hãy viết một chương trình R tính các giá trị của bảng tỉ hiệu trong
phương pháp nội suy Newton và áp dụng vào các dữ liệu trong Ví dụ 4.7.

Kết quả thu được là bảng tỉ hiệu khớp với những tính toán bằng tay
trong Ví dụ 4.7.

# Chương trình tính các tỉ hiệu của x và y
newton_interpolation <- function(x, y) {

n <- length(x)
if (n == 1) {

stop("Lỗi! Cần ít nhất hai điểm dữ liệu.")
}
else {

# Tạo một ma trận A để lưu trữ các tỉ hiệu

A <- matrix(data = 0, n, n - 1)

# Tính các tỉ hiệu và gán vào các yếu tố của A

for (j in 1:(n - 1))
for (i in 1:(n - j)) {
if (j == 1) {

A[i, j] = (y[i + 1] - y[i]) / (x[i + 1] - x[i])
} else {

dy = A[(i + 1), (j - 1)] - A[(i), (j - 1)]
dx = x[i + j] - x[i]
A[i, j] = dy / dx

}
}

# Đặt tên cho các cột tỉ hiệu

colnames(A) <- as.list(seq(1, n - 1, by = 1))
return(cbind(x, y, A))

108



4.3. ĐA THỨC NỘI SUY NEWTON

}
}
# Chạy thử newton_interpolation() với dữ liệu trong ví dụ trên.

x <- c(1, 2, 4, 5)
y <- c(25, 36, 106, 177)
newton_interpolation(x, y)

## x y 1 2 3
## [1,] 1 25 11 8 1
## [2,] 2 36 35 12 0
## [3,] 4 106 71 0 0
## [4,] 5 177 0 0 0

Chú ý 4.3. Thay vì viết kết quả của nội suy Newton về dạng “tiêu chuẩn”,
tức là dạng tổng các đơn thức của x , sắp xếp theo thứ tự tăng hoặc giảm
của bậc của x , ta có thể viết nó ở dạng “lồng nhau” (nested form). Khi đó,
việc tính giá trị của đa thức rất hiệu quả khi sử dụng lược đồ Horner (sửa
đổi). Chẳng hạn đối với đa thức p3(x ) trong (4.14),

p3(x ) = 25+ (x −1)(11+ (x −2)(8+ (x −4)
︸ ︷︷ ︸

w2

)

︸ ︷︷ ︸

w1

)

︸ ︷︷ ︸

w0

.

Việc tính giá trị của đa thức sẽ được thực hiện tượng tự như lược đồ Horner.
Ví dụ, hãy tính p3(2,5) như sau:

w3 = 1

w2 = 8+w3(2,5−4)
w1 = 11+w2(2,5−2)
w0 = 25+w1(2,5−1).

Tính toán cụ thể,

w2 = 6,5, w1 = 14,25, p3(2,5) =w0 = 46,375.

Chúng ta sẽ lập chương trình tự động tính các kết quả trên trong CAS 4.7.

Chú ý 4.4. Biểu diễn đa thức nội suy theo vế phải của (4.13) gọi là đa thức
nội suy Newton tiến. Bằng cách hoán đổi vai trò của các nút nội suy, ta có
thể đưa ra các biểu diễn khác nhau. Nói riêng, nếu ta có đa thức nội suy
Newton lùi như sau:
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pn (x ) := yn +
n
∑

i=1

y [xn , . . . , xn−i ]
i−1
∏

j=0

(x − xn− j ). (4.15)

4.3.2 Đa thức nội suy Newton với các nút nội suy cách đều

Khi các nút nội suy cách đều nhau, ta có thể biểu diễn đa thức nội suy
Newton một cách đơn giản hơn. Bằng cách đặt

x j = x0+ j h , j = 0, 1, 2, . . . ,

với h là khoảng cách giữa hai nút nội suy liên tiếp, và

x = x0+ t h ,

ta có
x − x j = (x0+ t h )− (x0+ j h ) = h (t − j ).

Vậy,
i−1
∏

j=0

(x − x j ) = h i
i−1
∏

j=0

(t − j ).

Tiếp theo, ta biểu diễn các tỉ hiệu qua các sai phân như sau: Sai phân tiến
(forward difference) của dãy yj là

∆yj = yj+1− yj , j = 0, 1, 2, . . . , n −1.

Sai phân tiến cấp 2 của là

∆2 yj =∆(∆yj ) =∆yj+1−∆yj , j = 0, 1, 2, . . . n −2.

Rõ ràng
∆2 yj = (yj+2− yj+1)− (yj+1− yj ) = yj+2−2yj+1+ yj .

Bằng quy nạp, ta có thể chứng minh được

∆k yj =
j
∑

i=0

(−1)i
�

k

i

�

yj+k−i , j = 0, 1, . . . , n −k .

Ở đây,
�k

i

�

là tổ hợp chập i của k phần tử:
�k

i

�

= k !
i !(k−i )! . Các tỉ hiệu được biểu

diễn qua sai phân như sau

y [x0, x1, . . . , xk ] =
∆k y0

(k !)h k
.
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Thay các biểu thức của tỉ hiệu này vào công thức nội suy Newton tiến, ta
thu được định lí sau:

Định lí 4.6: Nội suy Newton với mốc cách đều

Nếu x0, x1, . . . , xn là n +1 điểm phân biệt cách đều nhau:

x j = x0+ j h , j = 0, 1, 2, . . . ,

và y0 = y (x0), y1 = y (x1), . . . , yn = y (xn ) là một bộ n + 1 giá trị tương
ứng của y thì, với x = x0+ t h , ta có

pn (x ) = y0+ t∆y0+
t (t −1)

2!
∆2 y0+ · · ·+

t (t −1) · · · (t −n +1)
n !

∆n y0

(4.16)

là đa thức nội suy của y tại các nút xi .

Công thức (4.16) còn được gọi là công thức Newton–Gregory.7

Ví dụ 4.8. Giả sử ta biết giá trị của hàm số y = f (x ) tại một số giá trị của
đối số x như sau.

x 1 2 3 4 5

y 2018 1992 1902 1682 1242

Tính đa thức nội suy của y tại các nút nội suy bằng cách dùng công thức
nội suy Newton tiến với các nút cách đều.

Lời giải

Kí hiệu x0, . . . , x3 là các điểm nội suy và y0, . . . , y3 là các giá trị của y tại các
điểm nội suy đó. Ta tính các tỉ hiệu và viết vào bảng sau:

i xi yi Sai phân 1 Sai phân 2 Sai phân 3 Sai phân 4

0 1 2018 −26 −64 −66 −24
1 2 1992 −90 −130 −90 . . .
2 3 1902 −220 −220 . . . . . .
3 4 1682 −440 . . . . . . . . .
4 5 1242 . . . . . . . . . . . .

Ở hàng thứ hai từ cột thứ 3, ta thu được các sai phân hữu hạn ∆y0, ∆2 y0,

7James Gregory FRS (tháng 11 năm 1638 – tháng 10 năm 1675) là một nhà toán học và thiên
văn học người Scotland.
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. . . . Vậy, đa thức nội suy Newton của hàm số y tại các nút nội suy trên là

p4(1+ t ) = 2018+ t (−26) + (−64)
t (t −1)

2

+(−66)
t (t −1)(t −2)

6
−24

t (t −1)(t −2)(t −3)
24

.

Đó là đa thức nội suy Newton cần tính, viết dưới dạng biến t = x −1. Lưu
ý, cũng có thể viết lại đa thức nội suy là

p4(1+ t ) =−t 4−5t 3−10t 2−10t +2018,

và đổi biến x = 1+ t hay t = x −1, để thu được

p4(x ) =−x 4− x 3− x 2− x +2022.

Tuy nhiên, việc này không cần thiết để tính giá trị của đa thức nội suy.

CAS 4.6. Chúng ta lập hàm newton_coefficients() nhận vào một dãy
(sắp thứ tự) các giá trị y = (yi ), là những giá trị của hàm số cần nội suy tại
những mốc nội suy cách đều. Kết quả trả về là dãy các sai phân trong công
thức nội suy Newton.

# Hàm newton_coefficients() tính các hệ số trong đa thức
# nội suy Newton với mốc cách đều: y là dãy các giá trị
# nội suy với độ dài ít nhất 2.

newton_coefficients <- function(y) {
n <- length(y)
t <- numeric(n)
t[1] <- y[1]
for (i in 2:n) {

y <- diff(y) # Sử dụng diff() có sẵn
t[i] <- y[1]

}
return(t)

}

# Chạy thử newton_coefficients() với dữ liệu trong ví dụ trên.

y <- c(2018, 1992, 1902, 1682, 1242)
print(newton_coefficients(y))

## [1] 2018 -26 -64 -66 -24

Kết quả thu được là dãy các hệ số như trong Ví dụ 4.8.
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Mục CAS sau đây kết hợp phương pháp nội suy Newton và lược đồ
Horner (mở rộng) để tính giá trị của đa thức nội suy Newton.

CAS 4.7. Hãy tính các hệ số của đa thức nội suy Newton (hàng đầu tiên
trong bảng tỉ sai phân) của dữ liệu trong Ví dụ 4.7 và tính giá trị của đa
thức nội suy thu được tại x = a = 2,5.

# Hàm newton_interpolation() tính các tỉ hiệu của hai dãy x, y.
# Tham số x, y là hai dãy có cùng độ dài,
# a là điểm cần tính giá trị.

newton_interpolation <- function(x, y, a) {
n <- length(x)

# Dãy t lưu trữ các tỉ hiệu trên hàng đầu tiên.

t <- numeric(n)
t[1] <- y[1]
for (i in 2:n) {

for (j in 1:(n - i + 1)) {
z <- diff(y)
y[j] <- z[j] / (x[j + i - 1] - x[j])

}
t[i] <- y[1]

}

# Tính giá trị của đa thức tại x = a.

w <- t[n]
while (n > 1) {

n <- n - 1
w <- t[n] + w * (a - x[n])

}
return(list(coefficients = t, value = w))

}

# Chạy thử newton_interpolation()
x <- c(1, 2, 4, 5)
y <- c(25, 36, 106, 177)
a <- 2.5
newton_interpolation(x, y, a)

## $coefficients
## [1] 25 11 8 1
##
## $value
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## [1] 46,375

Các kết quả thu được trùng khớp với các kết quả đã tính bằng tay.

4.3.3 Đọc thêm: Định lí Hermite–Gennochi

Trong tiểu mục này, ta nói về định lí Hermite–Gennochi8 cho một biểu
diễn tích phân của các tỉ sai phân. Biểu diễn này cho phép ta mở rộng khái
niệm tỉ sai phân của các hàm số khả vi khi các điểm nội suy trùng nhau.

Định lí 4.7: Hermite–Gennochi

Cho x0, x1, . . . , xn ∈ (a , b ) và hàm số f (x ) khả vi n lần trên (a , b ). Khi
đó,

f [x0, x1, . . . , xn ] =

∫

· · ·
∫

T

f (n )(t0 x0+ · · ·+ tn xn )dt 1 . . . dt n , (4.17)

trong đó, miền lấy tích phân bội là

T =

¨

(t1, . . . , tn ): ti ≥ 0,
n
∑

i=1

ti ≤ 1

«

⊂Rn ,

và t0 = 1−
n
∑

i=1
ti .

Trường hợp n = 1, công thức Hermite–Gennochi (4.17) có thể dễ dàng
suy ra từ công thức tích phân Newton–Leibniz: Với x1 − x0 ̸= 0, đổi biến
u = (1− t1)x0+ t1 x1, du = 1

x1−x0
dt 1, ta có

∫

T

f ′(t0 x0+ t1 x1)dt 1 =

∫ 1

0

f ′((1− t1)x0+ t1 x1)dt 1,

=
1

x1− x0

∫ x1

x0

f ′(u )du

=
f (x1)− f (x0)

x1− x0

= f [x0, x1].

Với n = 2, công thức có thể suy ra từ định lí Fubini cho tích phân kép cùng

8Angelo Gennochi (5/3/1817-7/3/1889) là một nhà toán học người Italy. Công thức Hermite–
Gennochi được cho là xuất hiện trong công bố “Relation entre la différence et la dérivée d’un
même ordre quelconque, Archiv Math. Phys. (I) 49:342-345, 1869” của ông.
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với công thức Newton–Leibniz. Về chứng minh công thức này trong trường
hợp tổng quát, bạn đọc có thể xem Atkinson [1], trang 145-146.

Trong định nghĩa tỉ sai phân, người ta yêu cầu các điểm x0, x1, . . . , xn

là phân biệt. Tuy nhiên, vế phải của công thức Hermite–Gennochi (4.17)
hoàn toàn xác định mà không cần điều kiện này. Do đó, công thức này cho
phép chúng ta mở rộng tỉ sai phân cho các hàm số khả vi n lần.

Một hệ quả trực tiếp của công thức (4.17) là khẳng định sau: Nếu f là
một đa thức bậc nhỏ hơn n thì

f [x0, x1, . . . , xn ] = 0.

4.4 Sai số nội suy

Trong mục này, chúng ta tìm hiểu vấn đề đánh giá sai số trong nội suy, vấn
đề chọn mốc nội suy “tối ưu”, và một ví dụ về hiện tượng Runge. Tài liệu
tham khảo: T. V. Đĩnh [6, §4.1.7], P. K. Anh [2, §II.3–II.4].

4.4.1 Đánh giá sai số trong xấp xỉ bằng đa thức nội suy

Trong mục này, ta trình bày phương pháp tính gần đúng giá trị của hàm số
bằng đa thức nội suy. Phương pháp này được mô tả như sau: Giả sử f (x )
là một hàm số mà ta muốn tính giá trị của nó tại một số điểm trong đoạn
[a , b ]. Khi công thức của f (x ) quá phức tạp (như đối với các hàm siêu việt
sin x , cos x , hoặc a x ), ta có thể xấp xỉ giá trị f (x ) bằng giá trị Pn (x ) với Pn là
một đa thức nội suy của tại một số điểm x0, x1, . . . , xn , sao cho các giá trị tại
các nút đó có thể được tính dễ dàng. Do đó, nảy sinh vấn đề đánh giá sai
số của phép nội suy, tức là đánh giá phần dư

rn (x ) := f (x )−Pn (x ). (4.18)

Định lí 4.8: Đánh giá sai số nội suy

Nếu hàm số f (x ) liên tục trên [a , b ] và có đạo hàm đến cấp n + 1
trong (a , b ), thì

rn (x ) = f (n+1)(c )
ω(x )
(n +1)!

, (4.19)

với c ∈ [a , b ] là một điểm phụ thuộc vào x và

ω(x ) =
n
∏

i=0

(x − xi ) = (x − x0)(x − x1) · · · (x − xn ). (4.20)
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Định lí 4.8 cho phép ta đánh giá sai số tuyệt đối của phép tính gần đúng
f (x ) bằng giá trị của đa thức nội suy Pn (x ). Cụ thể hơn, giả sử f (n+1(x ) bị
chặn trên [a , b ]:

�

� f (n+1(x )
�

�≤M , a < x < b .

Khi đó,

|rn (x )| ≤
M

(n +1)!
|ω(x )| . (4.21)

Như vậy, sai số tuyệt đối được đánh giá qua vế phải của (4.21) và được
phân tích làm 2 phần. Phần thứ nhất, hằng số M , chỉ phụ thuộc vào hàm
f , và phần thứ hai, |ω(x )|, chỉ phụ thuộc vào các nút nội suy.

Chứng minh Định lí 4.8. Cố định x , x ̸= x j với mọi j ∈ {0, 1, . . . , n}, xét một
biến t mới, và thiết lập một hàm phụ như sau:

Gx (t ) = f (t )−Pn (t )−R (x )ω(t ).

Trong đó, R (x ) không phụ thuộc vào t và được chọn sao cho Gx (x ) = 0. Nói
cách khác,

R (x ) =
f (x )−Pn (x )
ω(x )

.

Rõ ràng, Gx (t ) khả vi tới cấp n +1. Mặt khác Gx (x j ) = 0, với j = 0, 1, . . . , n , và
Gx (x ) = 0. Bằng cách áp dụng liên tiếp định lí Rolle, ta có G ′x (t ) triệt tiêu tại
n +1 điểm phân biệt, G ′′x (t ) triệt tiêu tại n điểm phân biệt, . . . , G (n+1)

x (c ) = 0
với c ∈ (a , b ).

Mặt khác, bằng cách tính trực tiếp, ta có

G (n+1)
x (t ) = f (n+1)(t )−R (x )(n +1)! ∀ t ∈ [a , b ].

Thay t = c , ta có

0=G (n+1)
x (c ) = f (n+1)(c )−R (x )(n +1)!.

Từ đây, ta giải được

R (x ) =
f (n+1)(c )
(n +1)!

.

Thay vào công thức của Gx (t ), và thay t = x , nhớ rằng Gx (x ) = 0, ta dễ dàng
thu được (4.19).

Trường hợp x = x j nào đó thì có thể chọn c bất kì; (4.19) đúng vì hai vế
đều bằng 0.

Ví dụ 4.9. Giả sử đã tính được gần đúng hàm số y = sin(x ) tại một số giá trị
của x như sau (xem CAS 4.3):
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xi 0,1 0,2 0,3 0,4

yi = sin(xi ) 0,09983 0,19867 0,29552 0,38942

(a) Lập đa thức nội suy bậc 3, kí hiệu P3(x ), của sin(x ) tại các nút nội suy
nêu trên.

(b) Tính P3(0,25) và so sánh với sin(0,25).

Lời giải

(a) Ta lập đa thức nội suy P3(x ) bằng công thức Newton tiến, bắt đầu từ
x0 = 0,1 và các nút cách đều với khoảng cách h = 0,1. Dễ dàng tính
được các sai phân

i xi yi Sai phân 1 Sai phân 2 Sai phân 3

0 1 0,09983 0,09884 −0,00199 −0,00096
1 2 0,19867 0,09685 −0,00295 . . .
2 3 0,29552 0,09390 . . . . . .
3 4 0,38942 . . . . . . . . .

Từ công thức Newton, ta suy ra, với x = 0,1+0,1t hay t = 10x −1,

P3(x ) = 0,09883+0,09884t +
t (t −1)

2
(−0,00199)

+
t (t −1)(t −2)

6
(−0,00096).

(b) Để tính P3(x ) tại x = 0,25, ta thay t = 10x −1= 1,5, ta có

P3(0,25) = 0,09983+0,09884×1,5−
1,5(1,5−1)

2
×0,00199

−
1,5(1,5−1)(1,5−2)

6
×0,00096

= 0,24740375.

Vì P3 là đa thức nội suy của hàm y = sin(x ) nên ta có thể coi

sin(0,25)≈ P3(0,25) = 0,24740375.

Để đánh giá sai số, ta xét

ω(x ) = (x −0,1)(x −0,2)(x −0,3)(x −0,4).
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Rõ ràng,
ω(0,25) = 0,00005625.

Do hàm y = sin(x ) có đạo hàm mọi cấp nhận giá trị trong đoạn [−1, 1],
nên ta có thể ước lượng

|sin(0,25)−P3(0,25)| ≤ |r3(0,25)| ≤
1

4!
ω(0,25)< 2,35×10−6.

Như vậy, ta tính được sin(0,25) chính xác tới vài phần triệu.

4.4.2 Chọn nút nội suy tối ưu: đa thức Chebyshev

Từ Định lí 4.8, nảy sinh ra vấn đề chọn các điểm nội suy xi sao cho
max |ω(x )| bé nhất. Để tìm hiểu vấn đề này, để đơn giản, ta xét trường
hợp riêng khi đoạn [a , b ] là đoạn [−1,1]. Trong trường hợp này, các nút
nội suy “tối ưu” này là các nghiệm của đa thức Chebyshev9. Các đa thức
Chebyshev loại 1 bậc m , kí hiệu Tm , là đa thức duy nhất thỏa mãn

Tm (cos y ) = cos(m y ), y ∈R.

Như vậy, nếu x ∈ [−1, 1] thì

Tm (x ) = cos(m arccos(x )).

Ví dụ, với m = 1 thì T1(x ) thỏa mãn

T1(cos(y )) = cos(y ),

với mọi y ∈R, nên phải có
T1(x ) = x .

Với m = 2, T2(x ) phải thỏa mãn

T2(cos(y )) = cos(2y ) = 2 cos2(y )−1,

với mọi y ∈R, và vậy thì
T2(x ) = 2x 2−1.

Với m ≥ 3 tùy ý, công thức tường minh Tm thu được từ việc khai triển
cos(m y ) theo cos(y ).

Nghiệm của đa thức Chebyshev Tm (x ) có dạng cos(yi ), với yi là nghiệm
của phương trình lượng giác cos(m y ) = 0. Từ đó ta thấy rằng các nghiệm
này là

xi = cos
�

2i +1

m
·
π

2

�

,

9Pafnuty Lvovich Chebyshev (1821 – 1894) là một nhà toán học người Nga.
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Hình 4.1: Các đa thức Chebyshev bậc 2, 3, 4 và 5

với i = 0, 1, 2, . . . , m −1. Khi đó, với

ωm (x ) = (x − x0)(x − x1) · · · (x − xm−1), (4.22)

thìωm (x ) và Tm (x ) sai khác một nhân tử. Doωm (x ) có hệ số đầu tiên bằng
1 nên nhân tử đó chính là hệ số đầu tiên của Tm (x ), tức là 2m−1. Từ đó ta có
thể thấy rằng

ωm (x ) =
1

2m−1
Tm (x ).

Theo trên, rõ ràng |Tm (x )| ≤ 1 với mọi x ∈ [−1, 1] nên ta có

|ωm (x )| ≤
1

2m−1
. (4.23)

Dấu “=” xảy ra khi và chỉ khi x = cos( jπ/m ), j ∈ {1, 2, . . . , m −1}.

Định lí 4.9: Chebyshev

Giả sử P (x ) là một đa thức bậc m với hệ số đầu bằng 1:

P (x ) = x m +am−1 x m−1+ · · ·+a1 x +a0.

Khi đó, xảy ra bất đẳng thức

max
x∈[−1,1]

|P (x )| ≥ 2−m+1. (4.24)

Chứng minh. Xét đa thức

R (x ) = P (x )−ωm (x ).
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Nếu R (x ) = 0, có nghĩa là P (x ) =ωm (x ), thì dễ thấy dấu bằng xảy ra trong
(4.24). Giả sử R (x ) ̸= 0. Do P (x ) vàωm (x ) cùng có hệ số đầu (hệ số của x m )
bằng 1, nên R (x ) có bậc không vượt quá m −1.

Tại các điểm

c j = cos
�

jπ

m

�

, j = 0, 1, . . . , m −1,

ta có thể tính toán trực tiếp

Tm (c j ) = cos(m arccos(c j )) = cos( jπ) = (−1) j .

Vậy, ta có
ω(c j ) = 2−m+1Tm (c j ) = (−1) j 2−m+1.

Ta sẽ chứng minh bất đẳng thức sau (mạnh hơn (4.24))

max
j∈{0,1,...,m−1}

|P (c j )| ≥ 2−m+1. (4.25)

Thật vậy, ta thấy rằng đoạn [−1, 1] được chia thành m đoạn liên tiếp bởi các
điểm chia

−1= cm < cm−1 < cm−2 < · · ·< c1 < c0 = 1.

Do R (x ) có bậc không vượt quá m−1, R (x ) ̸= 0, nên R (x ) có nhiều nhất m−1
nghiệm trong [−1, 1]. Từ đó suy ra tồn tại một khoảng [ck , ck−1) sao cho R (x )
không có nghiệm trên đó và vậy thì R (x ) giữ nguyên dấu trên [ck , ck−1). Xảy
ra hai trường hợp:

• Trường hợp 1: R (x ) > 0 trên [ck , ck−1). Từ đó suy ra P (x ) ≥ωm (x ) trên
[ck , ck−1]. Nói riêng

max{|P (ck )|, |P (ck−1)|} ≥max{P (ck ), P (ck−1)}
≥max{ωm (ck ),ωm (ck−1)}

=max{2−m+1(−1)k , 2−m+1(−1)k−1)}
= 2−m+1.

• Trường hợp 2: R (x ) < 0 trên [ck , ck−1). Từ đó suy ra P (x ) ≤ωm (x ) trên
[ck , ck−1]. Nói riêng,

min{P (ck ), P (ck−1)} ≤min{ωm (ck ),ωm (ck−1)}

=min{2−m+1(−1)k , 2−m+1(−1)k−1)}
=−2−m+1.

Từ đó, dễ dàng suy ra

max{|P (ck )|, |P (ck−1)|} ≥ 2−m+1.
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Vậy, trong cả hai trường hợp, ta có

max
x∈[−1,1]

|P (x )| ≥ max
j∈{0,1,...,m−1}

|P (c j )| ≥max{|P (ck )|, |P (ck−1)|} ≥ 2−m+1,

và từ đó suy ra (4.25). Ta hoàn thành chứng minh.

Định lí 4.10: Chebyshev

Giả sử P (x ) là một đa thức bậc m với hệ số đầu bằng 1:

P (x ) = x m +am−1 x m−1+ · · ·+a1 x +a0.

Giả sử
max

x∈[−1,1]
|P (x )|= 2−m+1. (4.26)

Thế thì P (x ) =ωm (x ).

Định lí này cơ bản nói rằng, trong tập hợp các đa thức bậc m với hệ
số đầu bằng 1, đa thức 2−m+1Tm (x ) có chuẩn L∞ bé nhất. Ngoài ra, có thể
chứng minh được10 nó là đa thức duy nhất có trong đó có tính chất như
vậy. Ta không đi sâu vào chứng minh này.

Xét bài toán nội suy các hàm số xác định trên [−1,1]. Nếu chọn n + 1
mốc nội suy là các không điểm của đa thức Chebyshev Tn+1(x ) thì ta có
đánh giá sai số “tối ưu” sau đây:

Định lí 4.11: Sai số nội suy

Nếu hàm số f (x ) liên tục trên [−1,1] và có đạo hàm đến cấp n + 1
liên tục trong (−1, 1), và nếu Pn là đa thức nội suy của f tại các không
điểm của đa thức Chebyshev Tn+1(x ) thì

�

� f (x )−Pn (x )
�

�≤ 2−n max
y ∈[−1,1]

| f (n+1)(y )| (4.27)

Chú ý 4.5. Trong trường hợp tổng quát ([a , b ] không phải là đoạn [−1,1])
thì phép đổi biến

x̃ =
1

b −a
(2x −a − b )

đưa vấn đề đang xét về đoạn [−1, 1].

Ta kết thúc mục này bằng một ví dụ về một tình huống xấp xỉ một
hàm số (hữu tỉ) bởi đa thức nội suy với mốc cách đều và với mốc nội

10Đó là một kết quả của Borel, 1905.
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Hình 4.2: Đồ thị hàm số y = (1+16x 2)−1 và các đa thức nội suy của nó

suy Chebyshev. Ví dụ cho thấy, nhìn chung, nội suy với các mốc nội suy
Chebyshev cho “sai số đều” nhỏ hơn. Nó cũng minh họa một tình huống
mà xấp xỉ hàm số bằng nội suy có thể cho sai số rất lớn.

Ví dụ 4.10 (Hiện tượng Runge). Xấp xỉ hàm hữu tỉ

f (x ) =
1

1+16x 2

trên đoạn [−1, 1] bằng đa thức nội suy với các nút nội suy cho bởi

(a) các điểm cách đều x0 =−1, x1 =−0,8, x2 =−0,6, . . . , x9 = 0,8, x10 = 1;

(b) các không điểm của đa thức Chebyshev T11(x ).

Trong tình huống (a), ta có được đa thức nội suy xấp xỉ bằng

P10(x ) = 1−12,7196x 2+83,4829x 4−247,244x 6

+314,581x 8−139,041x 10.

Kết quả này có thể thu được bằng tính toán trực tiếp, hoặc tính toán dưới
sự trợ giúp của phần mềm. Mặt khác, trong tình huống (b), nội suy bằng
các không điểm của đa thức Chebyshev, ta thu được

P Cheb
10 (x ) = 1−10,1903x 2+46,8493x 4−98,8976x 6

+95,0685x 8−33,8021x 10.

Đồ thị của P Cheb
10 (x ) (màu đỏ) và P10(x ) (màu xanh) và đồ thị của hàm 1/(1+

16x 2) được thể hiện trong Hình 4.2.
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4.5 Nội suy hàm ghép trơn

Trong mục này, chúng ta tìm hiểu về nội suy hàm ghép trơn với trọng
tâm là hàm ghép trơn bậc ba (cubic spline), ứng dụng của hàm ghép trơn
để tính xấp xỉ giá trị của hàm số. Tài liệu tham khảo: P. K. Anh [2, §II.9],
Kreyszig [9, §19.3].

4.5.1 Sơ lược về hàm ghép trơn

Giả sử y phụ thuộc vào x theo một hàm đa thức bậc n . Chúng ta đã
biết trong bài toán nội suy đa thức, nếu xác định được chính xác giá trị
yj = y (x j ), j = 1,2, . . . , m , tại m điểm phân biệt x1, x2, . . . , xm , với m ≥ n + 1,
thì chúng ta có thể xác định được công thức của y theo x . Tuy nhiên, do
các giá trị yj có thể chỉ là giá trị gần đúng, nên kết quả của phép nội suy
cũng chỉ là gần đúng. Hơn nữa, nếu m > n +1 thì những sai số của yj dẫn
đến kết quả thu được của quá trình nội suy có thể chứa các số hạng với số
mũ lớn hơn n , dẫn đến những sai số không chấp nhận được. Điều đó cho
thấy khi số dữ liệu đã lớn hơn bậc của đa thức thì việc tăng thêm số lượng
các dữ kiện đầu vào không làm kết quả tốt hơn.

Sau đây, chúng ta nói về một phương pháp nội suy trên các khoảng nhỏ
và ghép các kết quả lại một cách trơn tru, được giới thiệu lần đầu bởi I. J.
Schoenberg vào năm 194611. Trong phương pháp này, người ta hạn chế
bậc của các đa thức tham gia vào quá trình nội suy bằng cách chỉ thực
hiện phép nội suy Hermite trên hai điểm nội suy liên tiếp. Sau đó, các kết
quả được ghép lại được một cách “trơn tru” để thu được hàm ghép trơn
(spline).

Để mô tả kĩ hơn, giả sử miền xác định của x là [a , b ], được chia thành
nhiều đoạn nhỏ

a = x0 < x1 < · · ·< xn = b .

Sau đó, trên mỗi đoạn nhỏ [xk−1, xk ], chúng ta tìm một hàm số Sk sao cho

Sk (xk−1) = yk−1, Sk (xk ) = yk .

Khi đó, hàm số

S (x ) =















S1(x ), x ∈ [x0, x1),
S2(x ) x ∈ [x1, x2)
· · ·
Sn (x ), x ∈ [xn−1, b ].

là một hàm số liên tục và thoả mãn yk = S (xk ) với mọi k ∈ {0,1, 2, . . . , xn}.
11I. J. Schoenberg, Contribution to the Problem of Approximation of Equidistant Data by Analytic

Functions, Quarterly of Applied Mathematics, Vol. 4, No. 1, 1946, pp. 45-99, 112-141.

123



CHƯƠNG 4. ĐA THỨC NỘI SUY VÀ XẤP XỈ ĐA THỨC

Bây giờ, vấn đề đặt ra là chúng ta sẽ xác định các hàm Sk như thế nào?
Về vấn đề này, chúng ta có một số phân tích sau:

• Nếu trên mỗi khoảng [xk−1, xk ], chúng ta lấy hàm nội suy bậc nhất,
tức là hàm tuyến tính với đồ thị đi qua hai điểm (xk , yk ), (xk−1, yk−1),
thì chúng ta có một hàm tuyến tính từng khúc (piecewise linear) trên
[a , b ]. Lưu ý rằng các hàm tuyến tính từng khúc nhìn chung không
khả vi tại các điểm x j .

• Nếu trên mỗi khoảng [xk−1, xk ], chúng ta xác định một hàm nội suy
bậc hai, tức là tìm một hàm sao cho đồ thị của nó là một parabol đi
qua hai điểm (xk , yk ), (xk−1, yk−1) thì chúng ta gặp phải vấn đề là có vô
hạn các hàm như vậy. Chúng ta sẽ cần thêm điều kiện để xác định
duy nhất các hàm bậc hai đó, chẳng hạn như điều kiện về hệ số góc
của tiếp tuyến của parabol tại 1 điểm đầu mút.

• Nếu trên mỗi khoảng [xk−1, xk ], chúng ta xác định các hàm bậc ba với
đồ thị đi qua hai điểm (xk , yk ), (xk−1, yk−1), thì chúng ta cần thêm điều
kiện xác định duy nhất. Thông thường, chúng ta cũng sẽ đặt các điều
kiện về hệ số góc của đồ thị tại hai điểm đầu mút.

Từ phân tích trên, chúng ta thấy các hàm bậc nhất là quá “cứng”, dẫn đến
hàm ghép trơn S (x ) thường không trơn tại các điểm nút, trong khi đó các
hàm bậc hai cũng chưa đủ “mềm dẻo”: Các hàm bậc hai với đồ thị đi qua
hai điểm cố định được mô tả bởi 1 tham số. Mặt khác, họ các hàm bậc ba
với đồ thị đi qua hai điểm cố định là họ với hai tham số tự do. Điều này
làm cho việc sử dụng các hàm bậc ba cho bài toán ghép trơn (spline) gọi là
ghép trơn bậc ba (cubic spline) trở nên thuận tiện hơn.

4.5.2 Hàm ghép trơn bậc ba

Bây giờ, chúng ta tìm hiểu kĩ hơn về ghép trơn bậc ba. Bắt đầu bằng hai
trường hợp đơn giản sau: n = 1 và n = 2. Tìm hiểu kĩ hai trường hợp riêng
sẽ làm lộ rõ ý tưởng chứng minh trường hợp tổng quát.

Chúng ta bắt đầu xét với trường hợp n = 1. Điều thú vị là trường hợp
này chúng ta không ghép các hàm số. Thay vào đó, chúng ta chỉ xác định
một hàm bậc ba p (x ) với điều kiện

p (x0) = y0, p (x1) = y1.

Tất nhiên, có vô hạn hàm số bậc ba thoả mãn hai điều kiện trên. Do đó,
cần thêm các điều kiện nữa, đó là

p ′(x0) = k0, p ′(x1) = k1.
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Khi đó, chúng ta được một trường hợp đơn giản của bài toán nội suy
Hermite, tức là nội suy các giá trị của hàm số cùng với các đạo hàm của nó
tại một số nút nội suy. Các hệ số của hàm bậc ba p (x ) được xác định bởi hệ
phương trình







1 x0 x 2
0 x 3

0
0 1 2x0 3x 2

0
1 x1 x 2

1 x 3
1

0 1 2x1 3x 2
1













p0

p1

p2

p3






=







y0

k0

y1

k1






. (4.28)

Nếu gọi A là ma trận cỡ 4×4 trong vế trái của (4.28) thì, bằng tính toán trực
tiếp, bằng tay hoặc bằng máy tính (chẳng hạn Python với SymPy), có thể
thấy rằng det(A) = (x1−x0)4. Do đó, hệ (4.28) có nghiệm duy nhất, theo định
lí Cramer. Từ đó, thiết lập được các công thức tính pi , i = 1, 2, 3, 4.

Như vậy, bài toán tìm hàm đa thức bậc ≤ 3 với giá trị của hàm số và các
giá trị của đạo hàm tại hai điểm cho trước bằng những giá trị cho trước là
giải được và có nghiệm duy nhất.

Chú ý 4.6. Lưu ý rằng trường hợp n = 1 không minh hoạ sự “ghép trơn” đặc
trưng của phương pháp này, khi người ta cần ghép hai hay nhiều hơn hàm
bậc ba thành một hàm nội suy đa thức từng khúc (piecewise polynomial).

Trường hợp thú vị hơn là khi n = 2, lấy a = x0 < x1 < x2 = b và đi tìm hai
hàm số bậc ba

p (x ) = p0+p1 x +p2 x 2+p3 x 3,

q (x ) = q0+q1 x +q2 x 2+q3 x 3,

sao cho
p (x0) = y0, p (x1) = q (x1) = y1, q (x2) = y2.

Từ đây dẫn đến 4 phương trình tuyến tính đối với 8 ẩn số pi , qi , i = 1, . . . 4.
Các điều kiện tiếp theo là:

• Tính khả vi của hàm ghép tại x1 dẫn đến

p ′(x1) = q ′(x1),

hay
p1+2x1p2+3x 2

1 p3 = q1+2x1q2+3x 2
1 q3.

• Tính khả vi hai lần của hàm ghép tại x1 dẫn đến

p ′′(x1) = q ′′(x1),

hay, sau khi chia hai vế của phương trình cho 2,

p2+3x1p3 = q2+3x1q3.
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Đến đây, chúng ta thu được thêm 2 phương trình tuyến tính nữa đối với 8
ẩn số trên, tổng cộng là 6 phương trình. Để có thể xác định được toàn bộ 8
ẩn số, cần đặt thêm hai điều kiện nữa đối với hàm spline. Có một số lựa
chọn sau:

Hàm ghép trơn bị kẹp (clamped spline) là hàm ghép trơn với điều kiện cố
định các hướng tiếp xúc của hàm ghép trơn tại hai đầu mút (x0 và x2), có
nghĩa là

p ′(x0) = k0, q ′(x2) = k2,

với k0 và k2 cho trước. Điều kiện này cho chúng ta hai phương trình

p1+2x0p2+3x 2
0 p3 = k0

q1+2x2q2+3x 2
2 q3 = k2.

Tổng hợp các phương trình trên, chúng ta có hệ phương trình sau đối với
các hệ số của các hàm ghép trơn:





















1 x0 x 2
0 x 3

0 0 0 0 0
1 x1 x 2

1 x 3
1 0 0 0 0

0 0 0 0 1 x1 x 2
1 x 3

1
0 0 0 0 1 x2 x 2

2 x 3
2

0 1 2x1 3x1
2 0 −1 −2x1 −3x 2

1
0 0 1 3x1 0 0 −1 −3x1

0 1 2x0 3x0
2 0 0 0 0

0 0 0 0 0 1 2x2 3x 2
2









































p0

p1

p2

p3

q0

q1

q2

q3





















=





















y0

y1

y1

y2

0
0

k0

k2





















. (4.29)

Gọi M là ma trận cỡ 8×8 trong vế trái của (4.29). Khi đó, có thể tính được
(bằng tay hoặc bằng máy tính, chẳng hạn bằng SymPy trong Python)

det(M ) =−2(x0− x1)
3(x0− x2)(x1− x2)

3. (4.30)

Như vậy, det(M ) ̸= 0 bởi vì các điểm x0, x1 và x2 là đôi một khác nhau. Do
đó, theo định lí Cramer, với mọi bộ giá trị ở vế phải của (4.29), chúng ta
đều có thể tìm được duy nhất cặp các đa thức bậc ba p và q thoả mãn các
điều kiện nội suy ghép trơn.

Bổ đề sau cho phép chúng ta tính hướng tiếp tuyến của đồ thị hàm
ghép trơn tại điểm giữa khi biết hướng tiếp tuyến tại hai điểm hai bên.

Mệnh đề 4.1:

Giả sử các hệ số pi và qi , i = 0,1,2,3, của các đa thức bậc ba p (x ) và
q (x ) là nghiệm của hệ phương trình tuyến tính (4.29). Đặt k0 = p ′(x0),
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k1 = p ′(x1), k2 = q ′(x2). Khi đó, k1 = q ′(x1) và

k0

x1− x0
+

2(x2− x0)k1

(x2− x1)(x1− x0)
+

k2

x2− x1
= 3

�

y1− y0

(x1− x0)2
+

y2− y1

(x2− x1)2

�

.

(4.31)

Ngược lại, nếu k0, k1, k2 thoả mãn (4.31) thì các hàm số bậc ba p (x )
và q (x ) giải các bài toán nội suy Hermite

p (x0) = y0, p (x1) = y1, p ′(x0) = k0, p ′(x1) = k1,

và
q (x1) = y1, q (x2) = y2, q ′(x1) = k1, q ′(x2) = k2

thoả mãn điều kiện
p ′′(x1) = q ′′(x1).

Sơ lược của chứng minh. Chứng minh bổ đề này dựa hoàn toàn vào tính
toán, cụ thể là giải được các giá trị p0, p1, p2, và p3. Từ đó tính được k1 theo
các tham số còn lại. Thay biểu thức của k1 vào vế trái của (4.31) và đơn
giản hoá biểu thức thu được, chúng ta có thể đưa vế trái về vế phải. Các
tính toán này khá cồng kềnh nhưng có thể kiểm tra được bằng các phần
mềm tính toán kí hiệu.

Hàm ghép trơn bậc ba tự nhiên (natural cubic spline) là hàm ghép trơn
với điều kiện biên là

p ′′(x0) = q ′′(x2) = 0.

Lúc này, hệ phương trình để xác định pi , qi có dạng




















1 x0 x 2
0 x 3

0 0 0 0 0
1 x1 x 2

1 x 3
1 0 0 0 0

0 0 0 0 1 x1 x 2
1 x 3

1
0 0 0 0 1 x2 x 2

2 x 3
2

0 1 2x1 3x1
2 0 −1 −2x1 −3x 2

1
0 0 1 3x1 0 0 −1 −3x1

0 0 1 3x0 0 0 0 0
0 0 0 0 0 0 1 3x2









































p0

p1

p2

p3

q0

q1

q2

q3





















=





















y0

y1

y1

y2

0
0
0
0





















. (4.32)

Ma trận hệ số của hệ phương trình (4.32) có định thức là

D = 6(x0− x1)
2(x0− x2)(x1− x2)

2.

Kết quả này có thể kiểm tra lại dễ dàng bằng các phần mềm tính toán, như
Python (SymPy). Do định thức của ma trận hệ số khác không, bài toán
hàm ghép trơn tự nhiên cũng giải được duy nhất nghiệm.
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Trong trường hợp tổng quát, chúng ta có định lí sau đây khẳng định
tính tồn tại và duy nhất nghiệm của bài toán hàm ghép trơn bậc ba.

Định lí 4.12: Hàm ghép trơn bậc 3

Tồn tại duy nhất hàm nội suy ghép trơn bậc ba cho các dữ kiện
(x0, y0, (x1, y1), . . . , (xn , yn ) cho trước, x0 < x1 < · · ·< xn , trong đó n ≥ 2,
và thoả mãn điều kiện biên S ′(0) = k0 và S ′(xn ) = kn với k0 và kn cho
trước. Khẳng định tương tự cũng đúng với điều kiện biên S ′′(x0) =
S ′′(xn ) = 0.

Chứng minh. Bước đầu tiên, chúng ta chỉ ra rằng tồn tại các hệ số góc
k1, . . . , kn−1 thoả mãn các hệ thức như trong bổ đề trên. Điều này dễ thấy
vì chúng là nghiệm của một hệ phương trình tuyến tính Cramer với 3
đường chéo và đường chéo chính trội. Tiếp theo, các đa thức bậc ba nội suy
Hermite tương ứng cho chúng ta kết quả của hàm ghép trơn bậc ba.

4.5.3 Quy trình tính hàm ghép trơn bậc ba

Bài toán tìm hàm ghép trơn có thể được tiếp cận theo hai hướng sau đây.
Thứ nhất, chúng ta có thể viết ra hệ phương trình tuyến tính đối với tất
cả các hệ số của tất cả các đa thức bậc ba cần tìm. Nếu có n + 1 nút nội
suy, chúng ta có một hệ phương trình tuyến tính của 4n ẩn số. Một điều có
thể nhận thấy ngay là ma trận hệ số của hệ phương trình khá “thưa” với
định thức phụ thuộc vào phân bố các nút nội suy. Một số thuật toán giải
hệ tuyến tính hiệu quả có thể cho ngay kết quả cuối cùng.

Ở hướng tiếp cận thứ hai, chúng ta sẽ giải một bài toán phụ và dùng kết
quả của nó để tìm kết quả của bài toán chính. Theo hướng này, bài toán
được giải qua hai bước sau:

1. Xác định các hệ số góc ki tại các nút xi , tức là các đạo hàm S ′(xi ), với
i = 1, 2, . . . , n −1.

2. Trên mỗi khoảng xi−1, xi , xác định hàm bậc ba nội suy Hermite các
điều kiện

S (xi−1) = yi−1, S (xi ) = yi , S ′(xi−1) = ki−1, S ′(xi ) = ki ,

với ki−1 và ki đã được xác định từ Bước 1.

Từ đó, có thể thấy rằng, các đa thức bậc ba trong ghép trơn có thể được
xác định nếu xác định được các hệ số góc của chúng tại tất cả các nút nằm
giữa x0 và xn (hệ số góc tại hai nút đầu và cuối x0 và xn được cho trước).
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Ví dụ 4.11. Cho bộ dữ liệu (−1,2), (0,1), (1,3). Giả sử S (x ) là hàm nội suy
ghép trơn bậc ba tương ứng thoả mãn k0 = S ′(−1) = 1, k2 = S ′(1) =−1/2.

(a) Hãy tính k1 = S ′(0).

(b) Hãy tính hàm ghép trơn bậc ba S (x ).

Lời giải

Theo các kí hiệu trên, chúng ta có x0 = −1, x1 = 0 và x2 = 1, trong khi đó,
k0 = 1, k2 =−1/2 và cần tính k1 = S ′(0). Theo bổ đề trên

k0+4k1+k2 =
3

h
(y2− y0) = 3.

Từ đó suy ra S ′(0) = k1 = 5/8.
Đa thức nội suy Hermite bậc ba cho bộ số liệu (−1, 2, 1) và (0,1,5/8), tức

là đa thức bậc ba p (x ) = p0+p1 x +p2 x 2+p3 x 3 thoả mãn

p (−1) = 2, p ′(−1) = 1, p (0) = 1, p ′(0) = 5/8,

có các hệ số là nghiệm của






1 −1 1 −1
0 1 −2 3
1 0 0 0
0 1 0 0













p0

p1

p2

p3






=







2
1
1

5/8






.

Giải hệ này, ta thu được p0 = 1, p1 = 5/8, p2 = 21/4, và p3 = 29/8.
Trên đoạn [0, 1], hàm ghép trơn S (x ) = q (x ), trong đó q (x ) là đa thức bậc

ba Hermite nội suy bộ số liệu (0, 1, 5/8) và (1, 3,−1/2). Các hệ số của q thoả
mãn







1 0 0 0
0 1 0 0
1 1 1 1
0 1 2 3













q0

q1

q2

q3






=







1
5/8

3
−1/2






.

Giải hệ phương trình trên, chúng ta thu được

q0 = 1 q1 = 5/8, q2 = 21/4, q3 =−31/8.

Tổng hợp các kết quả, chúng ta có

S (x ) =







1+
5

8
x +

21

4
x 2+

29

8
x 3 nếu −1≤ x < 0,

1+
5

8
x +

21

4
x 2−

31

8
x 3 nếu 0≤ x ≤ 1.

Đó là hàm ghép trơn bậc ba với các điều kiện bị kẹp.
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−1,0 −0,5 0,0 0,5 1,0

1,
0

1,
5

2,
0

2,
5

3,
0

x

y

Hình 4.3: Các điểm dữ liệu trong Ví dụ 4.11 và hàm ghép trơn bậc ba của chúng

CAS 4.8. Giả sử chúng ta có bảng số liệu sau:

x 1 2 4 5 8 10

y 2 1,5 1,25 1,2 1,125 1,1

Gọi S (x ) là hàm ghép trơn bậc ba tự do của bộ số liệu trên. Đoạn code mẫu
sau tính giá trị của S tại một điểm nào đó, chẳng hạn S (6,46).

# Nạp gói pracma
library(pracma)

# Nạp các dữ liệu x và y
x <- c(1, 2, 4, 5, 8, 10)
y <- c(2, 1.5, 1.25, 1.2, 1.125, 1.1)

# cubicspline tự do tính giá trị của hàm ghép
# trơn tại xi = 6,46

result <- cubicspline(x, y, xi = 6.46, endp2nd = FALSE)

# In ra kết quả
print(result)

## [1] 1,14868973
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Kết quả thu được là S (6,46)≈ 1,1487, đúng như mong đợi.

CAS 4.9. Để lấy một ví dụ về hàm ghép trơn bậc ba bị kẹp, xét bảng số liệu
sau đây:

x 1 2 3 4

y 1 0,5 1/3 0,25

Gọi S (x ) là hàm ghép trơn bậc ba bị kẹp bởi hai điều kiện S ′(1) =−7/12 và
S ′(4) =−1/12. Đoạn mã lệnh R sau tính S (1,45).

library(pracma)

# Các dữ kiện x và y
x <- c(1, 2, 3, 4)
y <- c(1, 0.5, 1/3, 0.25)

# Hai giá trị của đạo hàm tại hai đầu mút
k <- c(-7/12, -1/12)

# cubicspline của pracma với điều kiện tại hai đầu mút
cubicspline(x, y, xi = 1.45, endp2nd = TRUE, der = k)

## [1] 0,74509375

Kết quả chạy máy tính, S (1,45) ≈ 0,7450937, trong khi đó, công thức
tường minh của S (x ) trên đoạn [1, 2] có thể tính bằng tay là

S (x ) =
1

12
x 3−

1

4
x 2−

1

3
x +

3

2
, 1≤ x ≤ 2.

Từ đó, bạn đọc có thể tự so sánh kết quả tính tự động bởi R và kết quả tính
bằng tay.

Kết thúc mục này là định lí sau đây nêu ra một tính chất thú vị của hàm
ghép trơn bậc ba: tính cực tiểu hoá trung bình bình phương của đạo hàm
cấp hai.
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Định lí 4.13:

Cho f (x ) là một hàm khả vi liên tục hai lần trên [a , b ] và S (x ) là một
hàm ghép trơn bậc ba nội suy f (x ) tại một số nút nội suy trong [a , b ].
Giả sử S (x ) thoả mãn một trong hai điều kiện sau:

(i) Điều kiện nội suy tự nhiên: S ′′(a ) = S ′′(b ) = 0, hoặc

(ii) Điều kiện nội suy bị kẹp: S ′(a ) = f ′(a ), S ′(b ) = f ′(b ).

Khi đó, xảy ra bất đẳng thức sau:

∫ b

a

�

�S ′′(x )
�

�

2
dx ≤

∫ b

a

�

� f ′′(x )
�

�

2
dx . (4.33)

Chứng minh. Đặt R (x ) = f (x )−S (x ) hay f (x ) = S (x ) +R (x ). Hơn nữa, R (x )
cũng khả vi liên tục hai lần. Chúng ta có

∫ b

a

| f ′′(x )|2 dx =

∫ b

a

|S ′′(x )|2 dx +

∫ b

a

|R ′′(x )|2 dx

+2

∫ b

a

R ′′(x )S ′′(x )dx . (4.34)

Lưu ý rằng đạo hàm cấp ba S ′′′(x ) xác định trên [a , b ] trừ các nút nội suy và
a = x0 < · · · < xn = b . Do đó, chúng ta có thể sử dụng công thức tích phân
từng phần như sau: Trên mỗi đoạn [xi−1, xi ] chúng ta có

∫ xi

xi−1

R ′′(x )S ′′(x )dx = S ′′(x )R ′(x )

�

�

�

�

xi

xi−1

−
∫ xi

xi−1

R ′(x )S ′′′i (x )dx ,

trong đó Si (x ) là hàm bậc ba, Si (x ) = S (x ) trên [xi−1, xi ]. Nhưng S ′′′i (x ) là hằng
số, nên

∫ xi

xi−1

R ′(x )S ′′′i (x )dx = S ′′′i (xi )R (x )

�

�

�

�

xi

xi−1

= S ′′′i (xi ) (R (xi )−R (xi−1)) = 0.

Do đó,

∫ xi

xi−1

R ′′(x )S ′′(x )dx = S ′′(x )R ′(x )

�

�

�

�

xi

xi−1

= S ′′(xi )R
′(xi )−S ′′(xi−1)R

′(xi−1).
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Lấy tổng khi i = 1, 2, . . . n , lưu ý rằng S ′′(x ) liên tục, chúng ta có
∫ b

a

R ′′(x )S ′′(x )dx =
n
∑

i=1

S ′′(xi )R
′(xi )−S ′′(xi−1)R

′(xi−1)

= S ′′(b )R ′(b )−S ′′(a )R ′(a ). (4.35)

Xét hai trường hợp: (i) Nếu S là hàm ghép trơn nội suy tự nhiên, S ′′(a ) =
S ′′(b ) = 0, thì vế phải của (4.35) bằng 0. (ii) Nếu S là hàm ghép trơn bị kẹp,
S ′(a ) = f ′(a ), S ′(b ) = f ′(b ), thì

R ′(a ) = f ′(a )−S ′(a ) = 0, R ′(b ) = f ′(b )−S ′(b ) = 0.

Từ đó, vế phải của (4.35) bằng 0.
Như vậy, trong cả hai trường hợp, vế trái của (4.35) bằng 0. Do đó, kết

hợp với (4.34), chúng ta thu được
∫ b

a

| f ′′(x )|2 dx =

∫ b

a

|S ′′(x )|2 dx +

∫ b

a

|R ′′(x )|2 dx ≥
∫ b

a

|S ′′(x )|2 dx .

Đó là điều phải chứng minh.

Áp dụng định lí trên, bạn đọc có thể dễ dàng suy luận để thu được hệ
quả sau:

Định lí 4.14:

Cho f (x ) là một hàm khả vi liên tục hai lần trên [a , b ], Sn (x ) là một
hàm ghép trơn bậc ba tự nhiên nội suy f (x ) tại một số nút nội suy
trong [a , b ] và Sc (x ) là hàm ghép trơn bậc ba bị kẹp với điều kiện
S ′c (a ) = f ′(a ), S ′c (b ) = f ′(b ). Khi đó, xảy ra bất đẳng thức sau:

∫ b

a

�

�S ′′n (x )
�

�

2
dx ≤

∫ b

a

�

�S ′′c (x )
�

�

2
dx ≤

∫ b

a

�

� f ′′(x )
�

�

2
dx . (4.36)

4.6 Phương pháp bình phương bé nhất

Sau đây, chúng ta tìm hiểu phương pháp bình phương bé nhất (ordinary
least squares method) để làm khớp dữ liệu (data fitting). Đó là một phương
pháp quan trọng thường được dùng để tìm các đường hồi quy (regression
curve) trong thống kê học. Tuy nhiên, trong khuôn khổ của tài liệu này
chúng ta chỉ tập trung vào vấn đề tính toán các đường hồi quy mà không
nói về những khía cạnh thống kê như vấn đề xây dựng khoảng tin cậy của
các hệ số hồi quy. Tài liệu tham khảo: T. V. Đĩnh [6, §4.2], Kreyszig [9, §20.5,
§25.9].
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4.6.1 Xấp xỉ tuyến tính

Định luật Hooke12 về lò xo nói rằng, trong giới hạn đàn hồi, độ lớn lực đàn
hồi F tỉ lệ thuận với độ biến dạng của lò xo:

F = k s .

Hằng số k được gọi là độ cứng (hệ số đàn hồi) của lò xo. Để xác định k
bằng thực nghiệm, người ta cho tác dụng một lực F vào một đầu của lò xo
và đo độ dãn/nén s . Kết quả thu được là một bộ dữ liệu (si , Fi ), i = 1, 2, . . . , n ,
với n là số lần đo.

Nếu các phép đo đạc là hoàn chính xác (và lò xo tuân theo định luật
Hooke một cách hoàn hảo) thì k = Fi /si không phụ thuộc vào chỉ số i .
Nhưng các phép đo chỉ cho kết quả gần đúng và chúng ta có các giá trị
ki = Fi /si không nhất thiết bằng nhau. Từ đây nảy sinh vấn đề tìm một giá
trị k duy nhất từ các dữ liệu trên. Vấn đề này được giải quyết bằng phương
pháp bình phương bé nhất mà chúng ta sẽ tìm hiểu ngay sau đây.

Trong phương pháp bình phương bé nhất, ta tìm k sao cho tổng bình
phương các sai số đối với F là bé nhất. Tức là tìm một giá trị k ∗ bởi

k ∗ = arg min
n
∑

i=1

|Fi −k si |2.

Theo hướng này, ta xét hàm số

S (k ) :=
n
∑

i=1

|Fi −k si |2.

Rõ ràng, S (k ) là hàm bậc hai đối với k . Cực tiểu duy nhất của nó là nghiệm
của

S ′(k ) = 0.

Từ đó, ta có

k ∗ =

∑n
i=1 Fi si

∑n
i=1 s 2

i

.

Ví dụ 4.12. Để xác định độ cứng k của một lò xo, người ta tiến hành treo
các vật nặng vào một đầu của lò xo tạo ra các trọng lực Fi lần lượt là 2, 4, và
6 Newton tác dụng vào lo xo. Khi đó, các li độ si tương ứng là đo được là
1,5, 2,9, và 4,4 (mm). Nếu các phép đo này là chính xác hoàn toàn thì định
luật Hooke nói rằng

2= 1,5k , 4= 2,9k , 6= 4,4k .

12Robert Hooke FRS (1635 – 1703) là một nhà toán học và vật lý học người Anh.
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Tuy nhiên, 3 phương trình trên lập thành một hệ phương trình quá xác
định (overdetermined system) không có nghiệm. Nếu dùng phương pháp
bình phương bé nhất mô tả ở trên, ta thu được

k ≈
2×1,5+4×2,9+6×4,4

(1,52+2,92+4,42)
=

41

30,02
≈ 1,366 (N/mm).

Trong thực tế, ngoài lực đàn hồi, chúng ta còn có thể có một ngoại lực
Fb (như lực hấp dẫn tác dụng lên một đầu lò xo). Khi đó, tổng hợp lực đo
được có dạng

F = k s + Fb .

Khi đó, ta cần xác định hai tham số k và Fb dựa trên các giá trị đo đạc của
s và F . Nó là một trường hợp đặc biệt của xấp xỉ tuyến tính bằng phương
pháp bình phương bé nhất, được mô tả như sau. Giả sử ta đã biết hai đại
lượng x và y phụ thuộc nhau qua biểu thức dạng

y = a x + b ,

nhưng các hệ số a , b chưa xác định. Giả sử rằng ta đã biết giá trị yi , i =
1, 2, . . . , n của hàm số tại các điểm xi . Ta sẽ tìm các giá trị của tham số a và
b sao cho hàm này xấp xỉ các giá trị đã cho với tổng bình phương các sai số
tại các điểm (xi , yi ) là bé nhất. Nói cách khác, ta cần tìm

(a ∗, b ∗) = arg minS (a , b ),

với

S (a , b ) :=
1

2

n
∑

i=1

�

�yi − (a xi + b )
�

�

2
.

Rõ rằng S (a , b ) là hàm khả vi của hai biến a và b . Để tìm điểm cực tiểu, ta
bắt đầu với việc tìm điểm tới hạn (critical point) của nó, tức là tìm (a , b )
sao cho các đạo hàm riêng của S triệt tiêu:

∂ S

∂ a
=
∂ S

∂ b
= 0. (4.37)

Đặt

Si :=
1

2

�

�yi − (a xi + b )
�

�

2
=

1

2
y 2

i +
1

2
a 2 x 2

i +
1

2
b 2− xi yi a − yi b +a b xi ,

Khi đó,

∂ Si

∂ a
= a x 2

i − xi yi + b xi

∂ Si

∂ b
= b − yi +a xi
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Do S = S1+S2+ · · ·+Sn nên

∂ S

∂ a
=

n
∑

i=1

∂ Si

∂ a
= a

�

n
∑

i=1

x 2
i

�

−
n
∑

i=1

xi yi + b

�

n
∑

i=1

xi

�

∂ S

∂ b
=

n
∑

i=1

∂ Si

∂ b
= n b −

n
∑

i=1

yi +a

�

n
∑

i=1

xi

�

.

Khi đó, điều kiện (4.37) có dạng

�
∑n

i=1 x 2
i

∑n
i=1 xi

∑n
i=1 xi n

��

a
b

�

=
�
∑n

i=1 xi yi
∑n

i=1 yi

�

.

Hệ trên có nghiệm duy nhất được tính theo công thức Cramer. Thật vậy,
định thức của ma trận hệ số cấp 2×2 là

D :=

�

�

�

�

∑n
i=1 x 2

i

∑n
i=1 xi

∑n
i=1 xi n

�

�

�

�

= n
n
∑

i=1

x 2
i −

�

n
∑

i=1

xi

�2

.

Theo bất đẳng thức Cauchy–Bunyakovsky–Schwarz, D > 0 nếu có ít nhất
hai giá trị xi ̸= x j , 1 ≤ i < j ≤ n . Trong trường hợp này, hệ có nghiệm duy
nhất là a ∗, b ∗. Để tính nghiệm, ta tính

Da :=

�

�

�

�

∑n
i=1 xi yi

∑n
i=1 xi

∑n
i=1 yi n

�

�

�

�

= n
n
∑

i=1

xi yi −

�

n
∑

i=1

xi

��

n
∑

i=1

yi

�

,

Db :=

�

�

�

�

∑n
i=1 x 2

i

∑n
i=1 xi yi

∑n
i=1 xi

∑n
i=1 yi

�

�

�

�

=

�

n
∑

i=1

x 2
i

��

n
∑

i=1

yi

�

−

�

n
∑

i=1

xi

��

n
∑

i=1

xi yi

�

.

Từ đó, ta thu được kết quả sau:
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Định lí 4.15:

Xấp xỉ tuyến tính với sai số bình phương bé nhất của bộ n số liệu
(xi , yi ), i = 1, 2, . . . n được cho bởi y = a x + b với

a =
n

n
∑

i=1
xi yi −

�

n
∑

i=1
xi

��

n
∑

i=1
yi

�

n
n
∑

i=1
x 2

i −
�

n
∑

i=1
xi

�2 ,

b =

�

n
∑

i=1
x 2

i

��

n
∑

i=1
yi

�

−
�

n
∑

i=1
xi

��

n
∑

i=1
xi yi

�

n
n
∑

i=1
x 2

i −
�

n
∑

i=1
xi

�2 .

Chú ý 4.7. Nếu ta đã tính được a , thì b có thể được tính qua a như sau:

b =

�

n
∑

i=1

yi −a
n
∑

i=1

xi

�

/n .

Ví dụ 4.13. Tìm hàm số bậc nhất a x + b xấp xỉ bộ dữ liệu (xi , yi ), i = 1, 2, 3,4
cho bởi bảng sau:

xi −1,2 −0,1 0,2 1,4

yi 0,105 1,101 0,890 1,925

Lời giải

Ta cần tính a và b theo công thức cho bởi Định lí 4.15. Như vậy, ta cần tính
x 2

i và xi yi với i = 1,2,3,4. Các kết quả được ghi trong bảng sau. Dòng cuối
cùng là tổng các kết quả ở phía trên.

xi yi x 2
i xi yi y = 0,68135x +0,95415

−1,2 0,105 1,44 −0,126 0,13653
−0,1 1,101 0,01 −0,1101 0,88602
0,2 0,890 0,04 0,178 1,09042
1,4 1,925 1,96 2,695 1,90804

0,3 4,021 3,45 2,6369 S (a , b ) = 0,087669

Ta thu được hàm bậc nhất y = 0,68135x +0,95415 với tổng bình phương các
sai số là 0,087669.
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Ví dụ 4.14. Giả sử đại lượng P (t ) phụ thuộc tuyến tính vào t , P (t ) = a t +b .
Tại một số giá trị của t , có các giá trị gần đúng của P như sau:

ti 3 4 5 6 7 8 9 10

Pi 3,45 3,60 5,89 6,31 6,90 8,52 9,62 11,30

Tìm gần đúng P (t ) bằng phương pháp bình phương nhỏ nhất và minh họa
kết quả bằng đồ thị.

Trả lời. Hàm P (t ) với các hệ số tính đến 4 chữ số sau dấu thập phân là
P (t ) ≈ 1,1135t − 0,2887. Đồ thị của hàm số P (t ) và các điểm dữ liệu được
cho trong CAS 4.10

CAS 4.10. Hãy giải Ví dụ 4.14 bằng R.

# Khai báo các vectơ P và t
t <- c(3, 4, 5, 6, 7 ,8, 9, 10)
P <- c(3.45, 3.60, 5.89, 6.31, 6.90, 8.52, 9.62, 11.30)

# Khai báo mô hình model bằng hàm lm()
model <- lm(P ~ t)

# Các biến a và b lưu trữ các hệ số hồi quy
a <- model$coefficients[2]
b <- model$coefficients[1]

# Công thức xấp xỉ tuyến tính
f <- function(x) a * x + b

# In ra các tham số của mô hình
print(model)

##
## Call:
## lm(formula = P ~ t)
##
## Coefficients:
## (Intercept) t
## -0,28869 1,11345

# Vẽ các điểm dữ liệu
plot(P ~ t)

# Vẽ đường thẳng xấp xỉ tuyến tính
curve(f, from = 3, to = 10, col = "blue", add = TRUE)
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3 4 5 6 7 8 9 10

4
6

8
10

t

P

Kết quả thu được khớp với kết quả tính bằng tay.
Lưu ý, rất nhiều máy tính khoa học cầm tay (như Casio FX-580VN) có

sẵn chức năng tính các hệ số a và b trong mô hình tuyến tính như trên.

4.6.2 Xấp xỉ đa thức bằng phương pháp bình phương bé nhất

Để mở rộng bài toán xấp xỉ tuyến tính cho các mối quan hệ ở dạng tổng
quát hơn, chúng ta sẽ sử dụng một số khái niệm và kết quả của đại số tuyến
tính.

Xét các ma trận và vectơ sau đây:

A =









1 x1

1 x2
...

...
1 xn









, y=









y1

y2
...

yn









, c=
�

b
a

�

.

Thế thì hàm S (a , b ) có thể viết dưới dạng

S (a , b ) =
1

2
∥Ac−y∥2

2.

Vế phải là chuẩn ℓ2 (chuẩn Euclid) của các vectơ trong Rn (xem §3.2.1).
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Chú ý rằng Ac thuộc vào không gian ảnh (image) của ánh xạ tuyến tính
LA : c 7→ Ac, tức là không gian sinh bởi các cột của A:

Ac ∈R (A).

Do đó, bài toán tìm c= (a , b )T sao cho S (a , b ) bé nhất có thể được giải quyết
thông qua việc tìm hình chiếu trực giao của y lên không gian ảnh R (A). Ở
đây,

R (A) :=
�

w ∈Rn |w= Av, v ∈R2
	

.

Nếu y0 là hình chiếu trực giao của y lên R (A) thì y−y0 thuộc phần bù
trực giao của R (A). Tức là y−y0 ∈R (A)⊥. Theo một kết quả cổ điển của đại
số tuyến tính thì R (A)⊥ =N (AT ). Ở đây N (AT ) là không gian zero của AT , tức
là

N (AT ) =
�

d ∈R2 | Ad= 0
	

.

Vậy, ta suy ra y−y0 ∈N (AT ). Tức là

0= AT (y−y0) = AT y−AT y0.

Do đó, nếu c là nghiệm của bài toán xấp xỉ bình phương bé nhất thì Ac= y0.
Từ đó suy ra,

AT Ac= AT y. (4.38)

Nếu AT A là khả nghịch thì c được xác định duy nhất theo phương trình
(4.38). Cụ thể là

c=
�

AT A
�−1

AT y. (4.39)

Đây là công thức dạng đóng cho nghiệm của bài toán bình phương bé
nhất.

Những lập luận trên cũng đúng nếu A là ma trận cỡ n ×k và c là vectơ
có k thành phần, với n ≥ 1 và k ≥ 1 tùy ý. Các ma trận A như vậy nảy sinh
trong bài toán bình phương bé nhất khi các mối quan hệ ta cần tìm ở dạng

y = F (x ; c1, c2, . . . , ck ),

với F là hàm phụ thuộc một cách tuyến tính vào k tham số c1, c2, . . . , ck , và
điều kiện xấp xỉ hàm được lấy tại n bộ dữ kiện. Nếu A có hạng bằng k , thì
có thể chứng minh được AT A là ma trận khả nghịch cỡ k ×k và khi đó c xác
định duy nhất.

Ví dụ 4.15. Biết đại lượng y là một tam thức bậc hai của x và tại một số
giá trị của x , ta biết xấp xỉ các giá trị của y như sau:

xi 0,5 1,6 2,3 3,1 3,8 4,2

yi 2,5 1,2 1,1 2,2 4,2 6,8
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Hãy lập công thức xấp xỉ biểu diễn y qua x bằng phương pháp bình phương
bé nhất.

Giả sử y = c0+ c1 x + c2 x 2. Đặt c= (c0, c1, c2)T và xét ma trận A cỡ 5×3 như
sau:

A =















1 x1 x 2
1

1 x2 x 2
2

1 x3 x 2
3

1 x4 x 2
4

1 x5 x 2
5

1 x6 x 2
6















=















1 0,5 0,25
1 1,6 2,56
1 2,3 5,29
1 3,1 9,61
1 3,8 14,44
1 4,2 17,64















.

Khi đó,

AT A ≈





6 15,5 49,79
15,5 49,79 175,139

49,79 175,139 646,6355



 .

Gọi y= (y1, y2, ·, y6)T thì

b= AT y=





18
57,04

18



 .

Theo (4.38), các giá trị c = (c0, c2, c2)T cần tìm là nghiệm của hệ phương
trình Cramer của 3 ẩn:

AT Ac= b,

có nghĩa là




6 15,5 49,79
15,5 49,79 175,139

49,79 175,139 646,6355









c1

c2

c3



=





18
57,04

18



 .

Giải hệ phương trình trên, chúng ta thu được nghiệm xấp xỉ (làm tròn tới 4
chữ số thập phân) là c= (4,2641; −3,7247; 1,0072). Công thức xấp xỉ y biểu
diễn qua x là

y = 4,2641−3,7247 x +4,2641 x 2. (4.40)

Trong CAS 4.11 sau đây, chúng ta sẽ thực hành tính toán cho Ví dụ 4.15
trong R, vận dụng thuật toán qr.solve() có sẵn.

CAS 4.11. Các tính toán trong Ví dụ 4.15 được tính tự động bằng R như
sau:

# Dữ liệu ban đầu
x <- c(0.5, 1.6, 2.3, 3.1, 3.8, 4.2)
y <- c(2.5, 1.2, 1.1, 2.2, 4.2, 6.8)
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# Tạo ma trận A với các cột 1, x, x^2 bằng cbind()
A <- cbind(1, x, x^2)

# Véctơ b = y A
b <- y %*% A

# Tìm nghiệm với chuẩn bé nhất của hệ dưới xác định Ay = b,
# làm tròn tới 4 chữ số thập phân.
model <- round(qr.solve(A, y), 4)

# In ra kết quả
print(model)

## x
## 4,2641 -3,7247 1,0072

Kết quả của print(model) là các hệ số cần tìm. Đoạn mã lệnh R tiếp
sau đây, ta vẽ đồ thị của dữ liệu và đường xấp xỉ để có một minh hoạ trực
quan về lời giải.

# Vẽ hình minh hoạ các điểm mẫu (x, y)
plot(y ~ x, xlim = c(0, 4.5), ylim = c(0.5, 7))

# Định nghĩa hàm số f(x) thu được từ đoạn mã phía trên
f <- function(x) {

model[3] * x^2 + model[2] * x + model[1]
}

# Vẽ đồ thị hàm f(x)
curve(f, from = 0, to = 5, col = "blue", lty = 1, add = TRUE)
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4.6.3 Xấp xỉ bằng các hàm luỹ thừa

Năm 1924, khi nghiên cứu tương quan giữa khối lượng của càng lớn của
một loài cua, Huxley13 nhận thấy rằng, nếu y là khối lượng của càng lớn
của một cá thể cua, w là khối lượng của toàn bộ cá thể đó, và x =w − y là
khối lượng của phần cơ thể còn lại không bao gồm càng cua, thì mối quan
hệ giữa x và y là một mối quan hệ phi tuyến.

Tuy nhiên, khi biểu diễn các dữ liệu đo đạc được trên thang log-log,
tức là thang với trục hoành biểu diễn ln(x ) và trục tung biểu diễn ln(y ),
Huxley nhận thấy mối quan hệ giữa ln(x ) và ln(y ) “khá gần” với một quan
hệ tuyến tính. Từ đó, bằng cách áp dụng phương pháp ở mục trước cho
các đại lượng ln(y ) và ln(x ), ta có thể tìm được mối liên hệ dạng

ln(y ) = k ln(x ) + ln(B ), k > 1, B < 1. (4.41)

Mối liên hệ (4.41) có thể viết lại dưới dạng hàm lũy thừa

y = B x k . (4.42)

13HUXLEY, J. Constant Differential Growth-Ratios and their Significance. Nature 114, 895–896
(1924).
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Trong thực tế, mối quan hệ giữa x và y như trong (4.42) xuất hiện phổ
biến trong sinh học, thường được gọi là tương quan sinh trưởng (allometric
relation) hoặc luật mũ (power law)14. Những mối quan hệ tương tự như
vậy cũng xuất hiện trong những ngành khoa học khác như trong Kinh tế
học (như hàm sản xuất Cobb–Douglas Y = ALβK α) hay trong Vật lí, v.v.

Ví dụ 4.16. Áp suất P (kg cm−2) của một khối chất khí tương ứng với thể
tích V (cm3) của nó được đo đạc và ghi chép lại như sau:

V 50 60 70 90 100

P 64,7 51,3 40,5 25,9 7,8

Định luật khí lí tưởng nói rằng P V γ = C , trong đó, γ và C là hằng số. Hãy
ước tính từ dữ liệu trên các giá trị γ và C .

Lời giải

Mối quan hệ P V γ =C có thể viết lại dưới dạng ln(P ) =−γ ln(V )+ ln(C ). Do
đó, để ước tính γ và C , chúng ta sử dụng phương pháp xấp xỉ tuyến tính
trên thang log-log.

CAS 4.12. Hãy viết chương trình R để thực hiện các tính toán trong Ví
dụ 4.16.

P <- c(50, 60, 70, 90, 100)
V <- c(64.7, 51.3, 40.5, 25.9, 7.8)
P_log <- log(P)
V_log <- log(V)
model <- lm(P_log ~ V_log)
print(model)

##
## Call:
## lm(formula = P_log ~ V_log)
##
## Coefficients:
## (Intercept) V_log
## 5,324181 -0,307357

Tiếp theo, chúng ta biểu diễn các dữ liệu vẽ đồ thị của đường cong xấp
xỉ như sau:

14Shingleton, A. (2010) Allometry: The Study of Biological Scaling. Nature Education Knowledge
3(10):2
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plot(P ~ V)
f <- function(x) {

exp(model$coefficients[1]) * x^(model$coefficients[2])
}
curve(f, from = 7.7, to = 64.8, col = "blue", add = TRUE)
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Nhận xét 4.1. Mặc dù hai mối quan hệ (4.41) và (4.42) là tương đương,
nhưng khi áp dụng phương pháp bình phương bé nhất cho hai mối quan
hệ này thì ta thu được hai bài toán không tương đương. Đối với quan hệ
(4.41) trên thang log-log, ta đi tìm cực tiểu của

Slog(k , t ) :=
1

2

n
∑

i=1

(log(yi )−k log(xi )− t )2,

với t = log(b ) và n là số các điểm dữ liệu. Đó là hàm bậc hai đối với k và t .
Khi áp dụng phương pháp bình phương bé nhất cho quan hệ (4.42), ta đi
tìm cực tiểu của hàm

S (k , b ) =
1

2

n
∑

i=1

(yi − b x k
i )

2.
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S (k , b ) là một hàm số “siêu việt” của k và b . Có thể thấy hai hàm trên đạt
cực tiểu tại các giá trị khác nhau của k và t = log(b ).

4.6.4 Xấp xỉ bằng hàm số mũ

Một số đại lượng trong khoa học kĩ thuật, kinh tế, sinh học, khoa học xã hội
có mối quan hệ có thể được mô hình hoá bởi các hàm số dạng y = B e a x .
Từ đó, nảy sinh vấn đề tìm các giá trị a và B sao cho mô hình y = B e a x phù
hợp với một dữ liệu đo đạc cho trước.

Hàm lỗi không có trọng

Trong phương pháp này (giả sử B > 0 cho đơn giản), chúng ta lấy logarith
hai vế,

ln(y ) = ln(B ) +a x = b +a x ,

trong đó b := ln(B ). Bài toán đưa về bài toán xấp xỉ tuyến tính các giá trị a
và b = ln(B ) theo các dữ liệu (xi , ln(yi )). Lưu ý, phương pháp này có một đặc
điểm là giá trị của a và B phụ thuộc nhiều vào các giá trị yi gần 0 so với các
giá trị yi lớn hơn.

Hãy xem một ví dụ thực tế sau.

CAS 4.13. Dữ liệu từ một nghiên cứu với 2 871 tai nạn xe hơi gồm nguy cơ
tương đối y và nồng độ cồn trong máu x của người lái xe như sau:

x 0 0,01 0,03 0,05 0,07 0,09 0,11 0,13 0,15 0,17 0,19 0,21

y 1 1,03 1,06 1,38 2,09 3,54 6,41 12,6 22,1 39,05 65,32 99,78

Hãy xây dựng mô hình y = B e a x cho dữ liệu trên.

Phương pháp ở đây là tìm xấp xỉ tuyến tính bằng bình phương bé nhất
đối với dữ liệu (xi , ln(yi )). Để nhanh chóng, chúng ta dùng hàm có sẵn lm()
của R.

# Tạo véctơ x bắt đầu từ 0, 0,01, và các điểm cách đều
# với khoảng cách 0,02.
x <- c(0, seq(0.01, 0.21, by = 0.02))

# Véctơ y từ giả thiết
y <- c(1, 1.03, 1.06, 1.38, 2.09, 3.54, 6.41, 12.6, 22.1,
39.05, 65.32, 99.78)

# Xấp xỉ tuyến tính cho các dữ liệu x và ln(y)
y_log <- log(y)
model <- lm(y_log ~ x)
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# In ra màn hình kết quả

print(model$coefficients)

## (Intercept) x
## -0,539485261 23,817576640

Kết quả thu được từ đoạn mã trên như sau:

ln(y ) =−0,5395+23,8176 x

Biểu đồ phân tán (scatter plot) của dữ liệu cùng với đồ thị của mô hình
hàm mũ được thể hiện trong Hình 4.4 (đường màu đỏ). Chú ý quan sát
thấy đường cong mầu đỏ đi khá xa so với các dữ liệu khi yi lớn.

Hàm lỗi có trọng

Thay vì xét hàm mục tiêu S (a , b ) như trên, chúng ta xét hàm mục tiêu có
“trọng” sau:

Sw (a , b ) :=
1

2

n
∑

i=1

yi (ln(yi )− b −a xi )
2. (4.43)

Điểm khác biệt so với phương pháp ở mục trước là nhân tử yi được thêm
vào trước bình phương của giá trị “lỗi” tại xi . Điều này làm tăng ảnh hưởng
của lỗi khi các giá trị yi lớn và giảm nhẹ ảnh hưởng của lỗi khi yi bé.

Điểm tới hạn của hàm Sw (a , b ) là nghiệm của hệ phương trình

∂ Sw (a , b )
∂ a

=
∂ Sw (a , b )
∂ b

= 0, (4.44)

trong đó, các đạo hàm riêng này là

∂ Sw (a , b )
∂ a

= a
n
∑

i=1

x 2
i yi + b

n
∑

i=1

xi yi −
n
∑

i=1

xi yi log(yi ) (4.45)

∂ Sw (a , b )
∂ b

= a
n
∑

i=1

xi yi + b
n
∑

i=1

yi −
n
∑

i=1

yi log(yi ). (4.46)

Thay vào (4.44), chúng ta thu được hệ phương trình tuyến tính không
suy biến đối với hai biến a và b . Lưu ý, do yi > 0 nên cũng theo BĐT
Buniakovski–Cauchy-Schwarz, chúng ta có định thức của ma trận hệ số là

∆=

�

n
∑

i=1

x 2
i yi

��

n
∑

i=1

yi

�

−

�

n
∑

i=1

xi yi

�2

≥ 0,
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trong khi dấu bằng chỉ xảy ra khi các giá trị xi như nhau. Từ đó, công thức
Cramer cho chúng ta

a =

�

n
∑

i=1

xi yi ln(yi )

��

n
∑

i=1

yi

�

−

�

n
∑

i=1

yi ln(yi )

��

n
∑

i=1

xi yi

�

Á

∆.

Khi đã tính được a , chúng ta có thể thay vào phương trình thứ hai để tính

b =

¨�

n
∑

i=1

yi ln(yi )

�

−a

�

n
∑

i=1

xi yi

�«

Á

�

n
∑

i=1

yi

�

.

Tính toán cụ thể (CAS 4.14) chúng ta thu được các hệ số a và b . Đồ thị của
hàm số y = exp(b +a x ) là đường màu xanh trong Hình 4.4.

CAS 4.14. Chúng ta viết chương trình R vẽ hình minh hoạ các dữ liệu và
đường xấp xỉ bằng hàm mũ trong hai trường hợp có trọng và không có
trọng. Kết quả thu được là các hệ số

a = 25,69034, b =−0,758393,

cùng với Hình 4.4.

Nhận xét 4.2. Trong Hình 4.4, hai đường đồ thị thể hiện hai mô hình khá
gần nhau khi các giá trị y nhỏ. Hai đường đồ thị rời xa nhau với y lớn hơn,
đường màu xanh đi sát các điểm dữ liệu hơn. Kết quả này phù hợp với cách
xây dựng “hàm lỗi” (hàm Sw (a , b ) trong (4.43)) đặt trọng nhiều hơn vào các
sai số khi y lớn.

4.7 Câu hỏi và bài tập

1. Giả sử hàm số y = f (x ) có giá trị tại một số điểm cho bởi bảng sau:

x −1 0 1 2

y −1 4 15 50

Hãy xây dựng đa thức nội suy Lagrange P (x ) của f (x ) và tính gần đúng
giá trị f (1,2) bằng cách lấy f (1,2)≈ P (1,2).

[Trả lời: P (x ) = 4+5x +3x 2+3x 3, f (1,2)≈ P (1,2)≈ 19,504]

2. Giả sử hàm số y = f (x ) có giá trị tại một số điểm cho bởi bảng sau:

x 0 2 4 5

y −2 8 115 150
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(a) Hãy xây dựng đa thức nội suy Lagrange P (x ) của f (x ) và tính gần
đúng giá trị f (1) bằng cách lấy f (1)≈ P (1).

(b) Giả sử ta biết rằng hàm f (x ) có đạo hàm cấp bốn bị chặn bởi 10,
tức là | f (4)(x )| ≤ 10 trên đoạn [0,5]. Ước lượng sai số của phép xấp xỉ
f (1) bởi P (1).

3. Hãy xây dựng đa thức nội suy Newton tiến P3(x ) tại 4 nút nội suy x0 =
−2, x1 =−1, x2 = 0, và x3 = 1 của hàm số y = f (x ) = 2x . Từ đó tính xấp xỉ
giá trị

p
2 bằng P (0,5).

Thêm nút nội suy x4 = 2. Hãy xây dựng đa thức nội suy Newton tiến
P4(x ) bậc 4 tương ứng. Từ đó xấp xỉ giá trị

p
8 bằng P4(1,5).

4. Giả sử ℓi , i = 0,1, . . . , n là các đa thức nội suy cơ bản của các điểm nội
suy x0, x1, . . . , xn , cho bởi Định lí 4.3. Chứng minh rằng

n
∑

i=0

ℓi (x ) = 1,

với mọi x .

5. Trong một thí nghiệm đo độ cứng của lò xo, người ta thu được bảng số
liệu về độ lớn của lực đàn hồi và độ biến dạng của lò xo như sau:

Fi (N) 0,49 0,98 1,47 1,96 2,45

si (cm) 1,5 3,1 4,6 6,3 7,9

Giả thiết rằng độ lớn của lực đàn hồi tỉ lệ thuận với độ biến dạng của lò
xo, F = k s (định luật Hooke). Hãy xác định giá trị của k (đơn vị N/m) từ
bảng số liệu trên theo phương pháp bình phương bé nhất. Viết kết quả
với 4 chữ số chắc.

Trả lời: k ≈ 0,3126 (N/cm).

6. Thu thập dữ liệu thực tế, người ta thấy rằng chiều cao trung bình c của
trẻ em theo từng lứa tuổi t được cho bởi bảng sau:

c 75 92 108 121 130 142 155

t 1 3 5 7 9 11 13

Hãy xây dựng công thức biểu diễn c qua t dạng tuyến tính bằng phương
pháp xấp xỉ bình phương bé nhất.

Trả lời: Nếu c = a t + b là hàm xấp xỉ bình phương tối thiểu dữ liệu trên
thì

�

7 49
49 455

��

b
a

�

=
�

823
6485

�

.

Từ đó giải được b ≈ 72,3 và a ≈ 6,46.
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plot(y ~ x)
f <- function(x) {
exp(model$coefficients[1] + model$coefficients[2] * x)

}
curve(f, from = 0, to = 2.1, col = "red", add = TRUE)
ylny <- y * log(y)
a <- (sum(x * ylny) * sum(y) - sum(ylny) * sum(x * y)) /

(sum(x * x * y) * sum(y) - (sum(x * y))^2)
b <- (sum(ylny) - a * sum(x * y)) / sum(y)

# Mô hình y = g(x) cực tiểu hoá hàm lỗi có trọng.

g <- function(x) exp(b + a * x)
curve(g, from = 0, to = 2.1, col = "blue", add = TRUE)
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Hình 4.4: Dữ liệu và mô hình trong CAS 4.13
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Chương5
Tính gần đúng đạo hàm và tích
phân xác định

Trong chương này, chúng ta tìm hiểu một số phương pháp đạo hàm và tính
gần đúng tích phân xác định, bao gồm phương pháp tính đạo hàm bằng
khai triển Taylor, công thức quy tắc hình thang, quy tắc Simpson, và công
thức cầu phương Gauss.

Nội dung
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5.1 Tính gần đúng tích phân xác định

Trong mục này, chúng ta tìm hiểu một số phương pháp tính gần đúng tích
phân xác định, bao gồm công thức hình thang, công thức Simpson, công
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thức cầu phương Gauss. Tài liệu tham khảo: T. V. Đĩnh [6, §5.2], P. K. Anh
[2, §V.2], Kreyszig [9, §19.5].

Chúng ta hãy bắt đầu với một tích phân xác định

I =

∫ b

a

f (x )dx . (5.1)

Nếu f (x ) khả tích Riemann trên [a , b ] và F (x ) là một nguyên hàm của f (x )
trên (a , b ), liên tục trên [a , b ] thì, theo định lí cơ bản của giải tích (còn gọi
là công thức Newton–Leibniz), ta có

I =

∫ b

a

f (x )dx = F (b )− F (a ).

Tuy nhiên, trong thực tiễn, có rất nhiều tích phân xác định dạng (5.1) mà
nguyên hàm của hàm dưới dấu tích phân f (x ) không có công thức đơn
giản và tường minh. Một trong những tích phân như vậy là tích phân Gauss

∫ 1

0

e −x 2
dx , (5.2)

xuất hiện rất nhiều trong các bài toán thống kê liên quan đến phân phối
xác suất chuẩn tắc (normal distribution). Trong những trường hợp như
vậy, người ta không thể dùng công thức Newton–Leibniz để tính I . Từ đây,
nảy sinh vấn đề tính gần đúng các tích phân xác định.

Trong các mục tiếp theo của chương này, chúng ta tìm hiểu một số
phương pháp tính gần đúng tích phân xác định và cách thiết lập chúng
trong máy tính.

5.1.1 Quy tắc hình thang

Xét một tích phân xác định

I =

∫ b

a

f (x )dx ,

với a < b và f (x ) là hàm liên tục trên [a , b ]. Chúng ta chia đoạn [a , b ] thành
n đoạn có độ dài bằng nhau bởi n +1 điểm chia

a = x0 < x1 < · · ·< xn−1 < xn = b .

Khi đó, ta có mỗi đoạn có độ dài

h =
b −a

n
,
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còn các điểm chia được cho bởi

xi = a + i h , i = 0, 1, 2, . . . , n .

Nếu với mỗi i ∈ {1, 2, . . . n}, ta chọn một điểm ci ∈ [xi−1, xi ] và thiết lập tổng

σ(h ,{c j }) :=
n
∑

i=1

f (ci )h ,

thìσ(h ,{c j }) là một tổng Riemann của tích phân I . Nếu f khả tích Riemann
thì tổng Riemann σ(h ,{c j }) hội tụ tới I khi h →∞mà không phụ thuộc
vào cách chọn các điểm c j . Đặc biệt, các tổng Riemann trái σT và tổng
Riemann phải σP , cho bởi,

σT :=
n
∑

i=1

f (xi−1)h , σP :=
n
∑

i=1

f (xi )h

đều hội tụ tới I khi h→ 0. Với h đủ nhỏ, trung bình cộng của σT và σP , gọi
là IT là một xấp xỉ của I .

I ≈ IT :=
σT +σP

2
=

1

2

n
∑

i=1

( f (xi−1) + f (xi ))h

=
h

2

�

f (x0) +2 f (x1) + · · ·+2 f (xn−1) + f (xn )
�

.

Như vậy, chúng ta có thể lấy IT là một xấp xỉ của I . Sai số của phép xấp xỉ
này có thể được đánh giá thông qua đạo hàm cấp hai f ′′ của f như trong
định lí sau đây:

Định lí 5.1:

Giả sử f có đạo hàm cấp hai f ′′ trên [a , b ] và
�

� f ′′(x )
�

�≤M (M là hằng
số) trên [a , b ]. Khi đó,

|I − IT | ≤
M

12
h 2(b −a ). (5.3)

Chứng minh. Gọi L i (x ) là hàm tuyến tính nội suy hàm f (x ) tại hai nút xi

và xi+1. Khi đó, dễ dàng thấy rằng

∫ xi+1

xi

L i (x )dx =
1

2
( f (xi ) + f (xi+1))h .
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(Trong trường hợp f > 0, đẳng thức trên chính là công thức tính diện tích
hình thang vuông giới bạn bởi trục hoành, các đường x = xi , x = xi+1, và
đồ thị của L i .) Từ đó suy ra

IT =
n−1
∑

i=0

∫ xi+1

xi

L i (x )dx .

Mặt khác, theo công thức đánh giá sai số nội suy:

f (x )− L i (x ) =
f ′′(c )

2
(x − xi )(x − xi+1)

với c ∈ [xi , xi+1]. Từ đó, sử dụng giả thiết | f ′′(x )| ≤M , ta suy ra

�

� f (x )− L i (x )
�

�≤
M

2
|(x − xi )(x − xi+1)|=

M

2
(x − xi )(xi+1− x ).

Lấy tích phân hai vế,

∫ i+1

xi

�

� f (x )− L i (x )
�

�≤
M

2

∫ i+1

xi

(x − xi )(xi+1− x )dx

=
M

2

∫ h

0

t (h − t )dx

=
M

2

�

h t

2
−

t 3

3

��

�

�

�

h

t=0

=
M h 3

12
.

Ở trên, ta đã đổi biến x = xi + t , h = xi+1− xi . Từ đó suy ra

�

�

�

�

�

∫ xi+1

xi

f (x )dx −
∫ xi+1

xi

L i (x )dx

�

�

�

�

�

=

�

�

�

�

�

∫ xi+1

xi

( f (x )− L i (x ))dx

�

�

�

�

�

≤
∫ xi+1

xi

�

� f (x )− L i (x )
�

� dx

≤
M h 3

12
.
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Từ đó suy ra

|I − IT |=

�

�

�

�

�

∫ b

a

f (x )dx −
n−1
∑

i=0

∫ xi+1

xi

L i (x )dx

�

�

�

�

�

=

�

�

�

�

�

n−1
∑

i=0

∫ xi+1

xi

f (x )dx −
n−1
∑

i=0

∫ xi+1

xi

L i (x )dx

�

�

�

�

�

≤
n−1
∑

i=0

�

�

�

�

�

∫ xi+1

xi

f (x )dx −
n−1
∑

i=0

∫ xi+1

xi

L i (x )dx

�

�

�

�

�

=
n−1
∑

i=0

M h 3

12

=
M h 2

12
(b −a ), bởi vì n = h/(b −a ).

Ta được đánh giá cần chứng minh.

Ví dụ 5.1. Bằng quy tắc hình thang với 3 điểm chia, tính gần đúng tích
phân

I =

∫ 1

0

4 dx

1+ x 2
.

Lời giải

Với n = 2, ta có h = (b −a )/2= 1/2, chúng ta lấy các điểm chia x0 = 0, x1 = 1/2,
và x2 = 1. Khi đó

IT =
1

4

�

f (0) +2 f (1/2) + f (1)
�

=
1

4

�

4+2
�

16

5

�

+2
�

=
31

10
.

Chú ý rằng,

I =

∫ 1

0

4 dx

1+ x 2
= 4 arctan(x )

�

�

�

�

1

0

=π.

Do đó, với π≈ 3,1415926, ta thu được

|I − IT |=π−3,1≤ 0,0416.

Mặt khác, ta có thể dùng đánh giá sai số trong Định lí 5.1 như sau. Với
f (x ) = 4/(1+ x 2), ta có

f ′′(x ) =
32x 2

(1+ x 2)3
−

8

(1+ x 2)2
.
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Ta chọn M = 8 là hằng số dương bé nhất sao cho | f ′′(x )| ≤M trên [0, 1]. Định
lí đó cho ta đánh giá sai số

|I − IT | ≤
M

12
(b −a )h 2 =

�

8

12

��

1

2

�2

= 0.17.

Trong Ví dụ 5.1, ta cũng có thể tính tích phân đã cho bằng cách lấy
nguyên hàm và dễ dàng so sánh hai phương pháp và đánh giá sai số. Các
phương pháp tính gần đúng sẽ hữu ích hơn trong tình huống mà tích phân
không tính được bằng nguyên hàm, như trong ví dụ sau đây:

Ví dụ 5.2. Tính gần đúng tích phân

∫ 1

0

e −x 2
dx bằng quy tắc hình thang

với n = 10.

Lời giải

Ta có khoảng lấy tích phân là [a , b ] = [0,1]. Với n = 10, ta có h = 0,1. Do số
điểm chia khá lớn, để thuận tiện ta sẽ lập bảng các giá trị cần tính. Từ Bảng

i xi x 2
i e −x 2

i

0 0 0 1,00000
1 0,1 0,01 0,990050
2 0,2 0,04 0,960789
3 0,3 0,09 0,913931
4 0,4 0,16 0,852144
5 0,5 0,25 0,778801
6 0,6 0,36 0,697676
7 0,7 0,49 0,612626
8 0,8 0,64 0,527292
9 0,9 0,81 0,444858

10 1,0 1,00 0,367879

Tổng 1,367879 6,778167

Bảng 5.1: Tính toán trong Ví dụ 5.2

5.1, ta có

IT ≈
0,1

2
(1,367879+2(6,778167)) = 0,746211.

CAS 5.1. Đo cường độ dòng điện I (t ) qua một mạch điện tại các thời điểm
cách nhau 1s trong 6s, người ta thu được các kết quả ghi trong bảng sau:

t 0 1 2 3 4 5 6

I (t ) 80,00 92,61 106,48 121,67 138,24 156,25 175,76
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Biết rằng điện lượng Q chuyển qua đoạn mạch trong khoảng thời gian từ
t1 đến t2 cho bởi

Q (t1; t2) =

∫ t2

t1

I (t )dt .

Sau đây là một chương trình R để tính gần đúng Q (0;6) theo quy tắc hình
thang. Lưu ý, với những thông tin có được, không thể có đánh giá sai số
của kết quả này.

# Hàm trapz() nhận vào một dãy giá trị y và bước nhảy h,
# cho ra xấp xỉ của tích phân theo phương pháp hình thang.

trapz = function(y, h) {
n <- length(y)
s1 = (y[1] + y[n]) / 2
s2 = sum(y[2:(n - 1)])
return(h * (s1 + s2))

}

# Chạy thử trapezoid() với một dữ liệu cụ thể.

y <- c(80, 92.61, 106.48, 121.67, 138.24, 156.25, 175.76)
h <- 1
trapz(y, h)

## [1] 743,13

Bằng phương pháp này, chúng ta thu được xấp xỉ Q (0; 6)≈ 743,13.

5.1.2 Quy tắc Simpson

Nội dung của mục này là quy tắc Simpson1 (còn gọi là quy tắc parabol)
tính gần đúng một tích phân xác định.

Giả sử [a , b ] được chia thành 2n đoạn có độ dài bằngparabol nhau bởi
các điểm chia xi , i = 0,1, . . . 2n , với

a = x0 < x1 < · · ·< x2n−1 < x2n = b .

Với mỗi i , gọi Qi là đa thức bậc hai nội suy hàm f (x ) tại các nút x2i , x2i+1,

1Quy tắc Simpson để tính gần đúng các tích phân xác định được Thomas Simpson công bố lần
đầu tiên vào năm 1743. Mặc dù được đặt theo tên của ông, Thomas Simpson không thực sự là
người đầu tiên phát hiện ra nó. Bonaventura Cavalieri đã phát hiện ra phiên bản ban đầu của quy
tắc này vào năm 1639 và James Gregory đã công bố biến thể này vào năm 1668 cùng với một số
phương pháp số khác để tính gần đúng các tích phân xác định.
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và x2i+2. Trước hết, ta xét

Ii :=

∫ x2i+2

x2i

Qi (x )dx ,

và xem nó là một xấp xỉ của tích phân của f (x ) trên đoạn [x2i , x2i+2]:

∫ x2i+2

x2i

f (x )dx ≈ Ii .

Bây giờ, ta tính Ii . Theo công thức nội suy Lagrange, ta có

Qi (x ) = f (x2i )ℓ0(x ) + f (x2i+1)ℓ1(x ) + f (x2i+2)ℓ2(x ),

với ℓ0(x ), ℓ1(x ), và ℓ2(x ) là các đa thức nội suy Lagrange cơ bản. Cụ thể hơn,
ta có

ℓ0(x ) =
(x − x2i+1)(x − x2i+2)
(x2i − x2i+1)(x2i − x2i+2)

.

Với phép đổi biến x = x2i +h t , dx = h dt , ta dễ dàng tính được

∫ x2i+2

x2i

ℓ0(x )dx =
h

2

∫ 2

0

(t −1)(t −2)dt =
h

3
.

Tương tự như vậy, với

ℓ1(x ) =
(x − x2i )(x − x2i+2)

(x2i+1− x2i )(x2i+1− x2i+2)

ta có
∫ x2i+2

x2i

ℓ1(x )dx =−h

∫ 2

0

t (t −2)dt =
4h

3
.

Cuối cùng, với

ℓ2(x ) =
(x − x2i )(x − x2i+1)

(x2i+2− x2i )(x2i+2− x2i+1)
,

ta tính được
∫ x2i+2

x2i

ℓ2(x )dx =
h

2

∫ 2

0

t (t −1)dt =
h

3
.
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Tổng hợp các tính toán trên, ta thu được hệ quả

Ii =

∫ x2i+2

x2i

Qi (x )dx

= f (x2i )

∫ x2i+2

x2i

ℓ0(x )dx + f (x2i+1)

∫ x2i+2

x2i

ℓ1(x )dx

+ f (x2i+2)

∫ x2i+2

x2i

ℓ2(x )dx

=
h

3

�

f (x2i ) +4 f (x2i+1) + f (x2i+2)
�

.

Để xấp xỉ tích phân của f trên toàn bộ đoạn [a , b ], ta lấy tổng các Ii và gọi
nó là IS :

IS :=
n−1
∑

i=0

Ii =
h

3

�

f (x0) +4 f (x1) +2 f (x2) +4 f (x3) + · · ·

· · ·+2 f (x2n−2) +4 f (x2n−1) + f (x2n )
�

. (5.4)

Khi đó IS là một xấp xỉ của I . Sau đây, chúng ta cần đánh giá sai số của
phép xấp xỉ I bởi IS .

Định lí 5.2: Sai số toàn cục

Giả sử f có đạo hàm cấp bốn f (4) trên [a , b ], | f (4)(x )| ≤M (M là hằng
số) trên [a , b ]. Khi đó

|I − IS | ≤
M

180
h 4(b −a ). (5.5)

Để chứng minh định lí này, ta cần bổ đề sau đây về đánh giá sai số địa
phương của phương pháp Simpson, tức là đánh giá sai số trên mỗi đoạn
nhỏ.

Định lí 5.3: Sai số địa phương

Giả sử f có đạo hàm cấp 4. Khi đó,
∫ xi+1

xi−1

f (x )dx =
h

3

�

f (xi−1) +4 f (xi ) + f (xi+1)
�

−
h 5

90
f (4)(c ), (5.6)

với c ∈ [xi−1, xi+1].
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Chứng minh. Với mỗi t , ta gọi phần dư R (t ) cho bởi

R (t ) =

∫ xi+t

xi−t

f (x )dx −
t

3

�

f (xi − t ) +4 f (xi ) + f (xi + t )
�

Ta cần chứng minh

R (h ) =−
h 5

90
f (4)(c ),

với c ∈ [xi−1, xi+1]. Thật vậy, bởi công thức đạo hàm tích phân phụ thuộc
tham số, ta có

d

dt

∫ xi+t

xi−t

f (x )dx = f (xi − t ) + f (xi + t ).

Từ đó, ta tiếp tục tính

R ′(t ) =
2

3
[ f (xi − t ) + f (xi + t )]−

4

3
f (xi )−

t

3
[− f ′(xi − t ) + f ′(xi + t )].

Nói riêng,
R ′(0) = 0.

Tiếp tục lấy đạo hàm, ta có

R ′′(t ) =
2

3
[− f ′(xi − t ) + f ′(xi + t )]−

1

3
[− f ′(xi − t ) + f ′(xi + t )]

−
t

3
[ f ′′(xi − t ) + f ′′(xi + t )]

=
1

3
[− f ′(xi − t ) + f ′(xi + t )]−

t

3
[ f ′′(xi − t ) + f ′′(xi + t )].

Nói riêng, ta có
R ′′(0) = 0.

Tiếp tục lấy đạo hàm hai vế, ta có

R ′′′(t ) =
t

3
[− f ′′′(xi − t ) + f ′′′(xi + t )].

Xét hàm phụ sau:
ϕ(t ) :=R (t )− t 5R (h )/(h 5).

Từ tính toán ở trên, ta dễ dàng thấy rằng

ϕ(0) =ϕ′(0) =ϕ′′(0) =ϕ′′′(0) = 0.

Hơn nữa,
ϕ(h ) = 0.
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Áp dụng định lí Rolle cho hàm ϕ trên đoạn [0, h ], ta nhận được một giá trị
c1 ∈ [0, h ] sao cho

ϕ′(c1) = 0.

Tiếp theo, áp dụng định lí Rolle cho hàm ϕ′(t ) trên đoạn [0, c1], ta có một
giá trị c2 sao cho ϕ′′(c2) = 0. Tiếp tục áp dụng định lí Rolle, ta suy ra tồn tại
c ∈ (0, c2) sao cho

ϕ′′′(c3) = 0.

Theo định nghĩa của ϕ, ta có

0=ϕ′′′(c3) =R ′′′(c3)−60c 2
3 R (h )/(h 5).

Từ đây suy ra,

60c 2
3 R (h )/(h 5) =R ′′′(c3) =

c3

3
[− f ′′′(xi − c3) + f ′′′(xi + c3)] =

2c 2
3

3
f (4)(c ),

với c ∈ (xi − c3, xi + c3). Ở bước cuối cùng, ta đã áp dụng định lí Rolle một
lần nữa cho hàm f ′′′. Từ đây, ta dễ dàng suy ra

R (h ) =−
h 5

90
f (4)(c ).

Đó là điều phải chứng minh.

Chứng minh Định lí 5.2. Với mỗi i , gọi Ri (h ) là sai số địa phương trong bổ
đề trên. Khi đó,

|Ri (h )| ≤ h 5M /90.

Lấy tổng với i chạy qua các số lẻ từ 1 đến 2n −1, ta có ngay

|I − IS | ≤
2n−1
∑

i=1,i lẻ

|Ri (h )|

≤
2n−1
∑

i=1,i lẻ

h 5M /90

= nh 5M /90

=M h 4(b −a )/180.

Đó là điều phải chứng minh.

Nhận xét 5.1. Từ Định lí 5.2, ta thấy rằng nếu f (x ) là một hàm đa thức với
bậc bằng 3 hoặc bé hơn thì quy tắc Simpson cho một giá trị đúng vì đạo
hàm cấp 4 của f đồng nhất bằng 0.
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Trong ví dụ sau đây, ta dùng phương pháp Simpson để tính gần đúng
giá trị của môt hàm siêu việt bằng các phép tính số học thông qua việc viết
giá trị cần tính dưới dạng một tích phân xác định.

Ví dụ 5.3. Dùng quy tắc Simpson để tính gần đúng ln(2) với 4 chữ số chắc
theo nghĩa rộng.

Lời giải

Từ kiến thức cơ bản của giải tích, chúng ta có thể viết ln(2) dưới dạng một
tích phân. Cụ thể như sau:

ln(2) = ln(1+ x )

�

�

�

�

1

0

=

∫ 1

0

dx

1+ x
.

Vậy, bài toán quy về tính gần đúng tích phân trong vế phải của đẳng thức
trên. Bằng quy tắc Simpson với n = 8, ta có

IS =
1

24

�

1+4 ·
8

9
+2 ·

4

5
+4 ·

8

11
+2 ·

2

3
+4 ·

8

13
+2 ·

4

7
+4 ·

8

15
+

1

2

�

.

Tính và quy tròn IS tới 6 chữ số chắc (theo nghĩa hẹp) ta thu được

IS =
1498711

2162160
≈ 0,693155,

với sai số quy tròn không vượt quá 0,5 ·10−4. Mặt khác, hàm dưới dấu tích
phân là f (x ) = (1+ x )−1 có đạo hàm cấp 4 là

f (4)(x ) =
24

(1+ x )5
.

Do đó, trên đoạn [0, 1], ta có đánh giá | f (4)(x )| ≤ 24. Vậy,

| ln(2)− IS |= |I − IS | ≤ 24 ·
(0,125)4

180
≈ 0,4×10−4.

Từ đó, ta có xấp xỉ ln(2)≈ 0,693155, với sai số không vượt quá tổng của sai
số quy tròn và sai số phương pháp, tức là không vượt quá (0,4+0,5)×10−4 <
0,9 ·10−4, thỏa mãn yêu cầu đặt ra.

Ví dụ 5.4. Tính gần đúng tích phân I =

∫ 1

0

x x dx bằng quy tắc Simpson với

n = 4.

Lời giải
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Với n = 4, ta chia đoạn [0, 1] thành 4 đoạn nhỏ có độ dài bằng nhau và bằng
1
4 . Tính giá trị của hàm f (x ) = x x tại các điểm chia này, ta thu được bảng
sau:

xi 0
1

4

1

2

3

4
1

yi = x xi

i 1
s

1

2

s

1

2

1

2

√

√3
p

3

2
1

Ở trên, ta đã đặt f (0) := lim
x→0+

x x = 1 để mở rộng liên tục f (x ) lên [0, 1]. Trong

quy tắc Simpson, ta có h = 1
4 , nên

IS =
1

12

�

f (0) +4 f
�

1

4

�

+2 f
�

1

2

�

+4 f
�

3

4

�

+ f (1)
�

=
1

12

 

1+4

�√

√1

2

�

+2

�√

√1

2

�

+4

 

1

2

√

√3
p

3

2

!

+1

!

=
1

12

�

2+3
p

2+
Æ

6
p

3
�

.

Biểu diễn gần đúng các căn thức bằng số thập phân, chúng ta có

∫ 1

0

x x dx ≈ IS ≈ 0,7888625.

Ví dụ 5.5. Giả sử hàm f (x ) liên tục trên [0; 0,4] và có các giá trị tại một số
điểm được tính xấp xỉ như sau:

xi 0,0 0,1 0,2 0,3 0,4

f (xi ) 1,000 0,998 0,990 0,978 0,860

Hãy sử dụng dữ kiện này tính xấp xỉ tích phân I =

∫ 0,4

0

f (x )dx bằng quy

tắc Simpson.

Lời giải

Từ dữ kiện đã cho, ta suy ra n = 4, h = 0,1. Do đó

IS =
0,1

3

�

f (0,0) +4 f (0,1) +2 f (0,2) +4 f (0,3) + f (0,4)
�

.

Thay các giá trị của f tại các điểm đã cho từ bảng trên, ta có

IS ≈
0,1

3

�

1,000+4(0,998) +2(0,990) +4 f (0,978) +0,860
�

= 0,39146.
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CAS 5.2. Hàm simpson() trong đoạn chương trình R sau đây nhận vào
một dãy các giá trị y và độ dài khoảng chia h và trả về giá trị xấp xỉ của tích
phân theo quy tắc Simpson.

# Hàm simpson() nhận vào một dãy giá trị y và bước đi h,
# cho ra xấp xỉ của tích phân theo công thức Simpson.

simpson <- function(y, h) {
n = length(y)
if (n %% 2 != 1 | n == 1) {

stop("Lỗi! Số điểm chia không đúng.")
}
s = y[1] + 4 * y[n - 1] + y[n]
i = 2
while (i < n - 2) {

s = s + 4 * y[i] + 2 * y[i + 1]
i = i + 2

}
approx = s * h / 3
return(approx)

}

# Ví dụ áp dụng

y = c(1, 0.998, 0.990, 0.978, 0.860)
h = 0.1
simpson(y, h)

## [1] 0,391466667

Kết quả thu được hoàn toàn khớp với kết quả đã tính bằng tay trong Ví
dụ 5.5.

5.1.3 Quy tắc hình thang hiệu chỉnh biên

Mục này nói về quy tắc hình thang hiệu chỉnh biên (trapezoidal rule with
end-point correction) để tính gần đúng tích phân. Trong quy tắc này, chúng
ta cần biết giá trị của hàm số tại các điểm lưới và giá trị của đạo hàm tại
hai đầu mút.

Quy tắc này phát biểu như sau:

∫ b

a

f (x )dx ≈ IT +
h 2

12

�

f ′(a )− f ′(b )
�

, (5.7)
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trong đó IT là xấp xỉ của tích phân theo công thức hình thang,

IT =
h

2

�

f (a ) + f (b ) +2
n−1
∑

i=1

f (a + i h )

�

, h = (b −a )/n .

Một điều thú vị là chúng ta có thể thu được công thức xấp xỉ này bằng cách
thay hàm f (x ) dưới dấu tích phân bằng đa thức nội suy Hermite bậc ba
của nó.

Định lí 5.4:

Giả sử g (x ) là một hàm đa thức bậc không vượt quá 3. Khi đó,

∫ b

a

g (x )dx =
b −a

2

�

g (a ) + g (b )
�

+
(b −a )2

12

�

g ′(a )− g ′(b )
�

. (5.8)

Chứng minh. Một hàm đa thức bậc không vượt quá 3 có dạng tổng quát là

g (x ) = c0+ c1 x + c2 x 2+ c3 x 3,

trong đó c0, . . . , c3 là các hằng số, tức là một “tổ hợp tuyến tính” của các
đơn thức 1, x , x 2, x 3. Mặt khác, hai vế của (5.8) là tuyến tính theo g (tức
là các ánh xạ tuyến tính từ không gian véctơ các đa thức bậc không vượt
quá 3 vào R1. Do đó, chỉ cần chứng minh (5.8) cho các đơn thức 1, x , x 2, x 3.
Chẳng hạn, với g (x ) = x 3, vế trái có thể tính như sau:

∫ b

a

g (x )dx =

∫ b

a

x 3 dx

=
1

4
x 4

�

�

�

�

b

a

=
1

4
(b 4−a 4)

=
1

4
(b −a )(b 3+ b 2a + b a 2+ b 3).

Mặt khác, vế phải có thể biến đổi như sau:

b −a

2

�

g (a ) + g (b )
�

+
(b −a )2

12

�

g ′(a )− g ′(b )
�

=
b −a

2
(a 3+ b 3) +

(b −a )2

12
(3a 2−3b 2)

=
1

4
(b −a )(b 3+ b 2a + b a 2+ b 3).

So sánh hai tính toán trên, chúng ta kết luận được (5.8) đúng khi g (x ) = x 3.
Các trường hợp còn lại đơn giản hơn. Chi tiết dành cho bạn đọc.
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Từ mệnh đề trên, có thể thấy rằng công thức xấp xỉ hình thang thu được
từ việc xấp xỉ hàm số dưới dấu tích phân bằng các hàm ghép trơn bậc ba
bị kẹp. Lưu ý, công thức hình thang hiệu chỉnh còn là một trường hợp đặc
biệt của các công thức xấp xỉ tích phân Euler–Maclaurin.

CAS 5.3. Hãy lập chương trình R tính gần đúng tích phân bằng công thức
hình thang với hiệu chỉnh tại các đầu mút, áp dụng vào tích phân

∫ 1

0

dx

1+ x 2
=
π

4

Kết quả thu được cho một xấp xỉ của π/4.

# Hàm trapzoid_endpoint_correction() tính xấp xỉ tích phân theo
# công thức hình thang hiệu chỉnh.
# Tham số: y là dãy các giá trị, k0, k1 là các đạo hàm tại hai
# đầu mút, n là số khoảng chia và h là độ dài mỗi khoảng chia.

trapezoid_endpoint_correction = function(y, k0, k1, h) {
n = length(y)
s1 = (y[1] + y[n]) / 2
s2 = sum(y[2:(n - 1)])
cor = h * (k0 - k1) / 12
return(h * (s1 + s2 + cor))

}

# Định nghĩa hàm số f(x)
f <- function(x) {

1 / (1 + x^2)
}

# Đạo hàm f'(x)
f_prime <- function(x) {

- 2 * x / ((1 + x^2)^2)
}

# Số điểm chia n và độ dài khoảng chia h
n <- 10
h <- 1 / 10

# Lưới các điểm cần tính giá trị
x <- seq(from = 0, to = 1, length.out = (n + 1))

# Dãy các giá trị y tại các giá trị x
y <- f(x)
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# Các đạo hàm tại hai đầu mút
k0 <- f_prime(0)
k1 <- f_prime(1)

# Tính giá trị xấp xỉ bằng công thức hình thang hiệu chỉnh
result <- trapezoid_endpoint_correction(y, k0, k1, h)
print(result)

## [1] 0,785398164

Bạn đọc có thể so sánh giá trị tính được và giá trị xấp xỉ của π/4 và tự
rút ra nhận xét cho mình.

5.1.4 Công thức cầu phương Gauss

Các quy tắc hình thang và quy tắc Simpson ta đã tìm hiểu trong mục trước
là hai trường hợp riêng của công thức Newton–Cotes đóng. Chúng có dạng

∫ b

a

f (x )dx ≈ c0 f (x0) + c1 f (x1) + · · ·+ cn f (xn ),

trong đó, các điểm x j cách đều, x0 = a , xn = b , còn các hệ số c j được tính
dựa trên việc lấy tích phân các đa thức nội suy Lagrange bậc d , n ≥ 1. quy
tắc hình thang tương ứng với trường hợp d = 1, còn quy tắc Simpson tương
ứng với trường hợp d = 2.

Lưu ý là đối với các hàm đa thức bậc không vượt quá 3, công thức
Simpson cho giá trị đúng của tích phân từ giá trị của hàm số tại 3 nút. Một
câu hỏi tự nhiên đặt ra là có cách chọn các nút x0, x1, . . . , xn và một công
thức xấp xỉ sao cho kết quả là đúng đối với các đa thức bậc khá lớn?

Liên quan đến câu hỏi trên, chúng ta giới thiệu phương pháp cầu
phương Gauss (Gaussian quadrature rule), một công thức tính gần đúng
tích phân, được thiết lập trong nhiều gói phần mềm tính toán hiện đại như
gaussquad của phần mềm R và Matlab. Trong phương pháp này, các điểm
nút x j , j ∈ {0,1, . . . , n}, không cách đều nhau và được chọn sao cho công
thức xấp xỉ trở thành công thức đúng nếu hàm dưới dấu tích phân là đa
thức có bậc không vượt quá 2n+1. Nói riêng, với 3 nút nội suy ( n = 2), công
thức cầu phương Gauss cho kết quả đúng nếu hàm dưới dấu tích phân là
đa thức có bậc không vượt quá 5, tốt hơn so với quy tắc Simpson (chỉ đúng
khi đa thức đó có bậc không vượt quá 3).

Phương pháp này được xây dựng dựa trên các đa thức trực giao Legen-
dre2 (Legendre orthogonal polynomial) . Chi tiết như sau: Gọi Pk là đa thức

2Adrien-Marie Legendre (1752–1833) là một nhà toán học người Pháp.
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Legendre bậc k . Với k = 0,1,2, công thức tường minh của chúng là

P0(x ) = 1, P1(x ) = x , P2(x ) =
1

2
(3x 2−1), . . .

Các đa thức Legendre bậc cao hơn có thể được tính theo công thức truy
hồi Bonnet3

(n +1)Pn+1(x ) = (2n +1)x Pn (x )−nPn−1(x ), n ≥ 1. (5.9)

Ví dụ, với n = 2, thay vào (5.9), ta thu được

3P3(x ) = 5x P2(x )−2P1(x ) = 5x
�

1

2
(3x 2−1)

�

−2x .

Sau khi rút gọn vế phải và chia hai vế cho 3, ta thu được

P3(x ) =
1

2
(5x 3−3x ).

Đó là đa thức Legendre bậc 3.
Một tính chất quan trọng của các đa thức Legendre mà chúng ta cần để

xây dựng công thức cầu phương Gauss đó là tính trực giao:

∫ 1

−1

Q (x )Pk (x )dx = 0,

đúng với mọi đa thức Q (x ) có bậc bé hơn k . Từ tính chất này, ta có thể
chứng minh kết quả sau.

Định lí 5.5:

Giả sử rằng x0, x1, x2, . . . , xn là các nghiệm của đa thức Legendre thứ
n +1, Pn+1(x ). Gọi ℓk là đa thức nội suy Lagrange cơ bản tương ứng
với các nút nội suy x0, x1, . . . , xn . Đặt

ck =

∫ 1

−1

ℓk (x )dx .

Khi đó, với mọi đa thức P (x ) có bậc không vượt quá 2n +1,

∫ 1

−1

P (x )dx = c0P (x0) + c1P (x1) + · · ·+ cn P (xn ).

3Ossian Bonnet (1819–1892) là một nhà toán học người Pháp có nhiều đóng góp cho ngành
hình học vi phân (một nhánh của toán học).
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Chứng minh. Chia đa thức P cho Pn+1, ta được thương là Q và dư là R . Tức
là

P (x ) = Pn+1(x )Q (x ) +R (x ).

Do bậc của P không vượt quá 2n +1, bậc của Q không vượt quá n còn bậc
của R không vượt quá bậc của Pn+1. Do tính trực giao của đa thức Legendre,
ta có

∫ 1

−1

P (x )dx =

∫ 1

−1

Q (x )Pn+1(x )dx +

∫ 1

−1

R (x )dx =

∫ 1

−1

R (x )dx .

Theo công thức nội suy Lagrange

R (x ) =R (x0)ℓ0(x ) +R (x1)ℓ1(x ) + · · ·+R (xn )ℓn (x )

và vậy thì

∫ 1

−1

R (x )dx =R (x0)

∫ 1

−1

ℓ0(x )dx +R (x1)

∫ 1

−1

ℓ1(x )dx

+ · · ·+R (xn )

∫ 1

−1

ℓn (x )dx . (5.10)

Mặt khác, do x j là nghiệm của đa thức Legrendre Pn+1(x )

P (x j ) = Pn+1(x j )Q (x j ) +R (x j ) =R (x j ).

Thay R (x j ) và công thức c j vào (5.10) ta thu được điều phải chứng minh.

Định nghĩa 5.1:

Giả sử x0, x1, x2, . . . , xn nghiệm của đa thức Legendre thứ n+1, Pn+1(x ).
Công thức cầu phương Gauss thứ n là công thức xấp xỉ

∫ 1

−1

f (x )dx ≈ c0 f (x0) + c1 f (x1) + · · ·+ cn f (xn ) (5.11)

với c j , j = 0,2, . . . , n , được cho trong định lí 5.5.

Như vậy, để áp dụng công thức cầu phương Gauss n điểm, ta cần tìm
các không điểm của đa thức Legendre cấp n và xác định các trọng số c j .
Dưới đây là xác định các giá trị này trong 2 trường hợp n bé.
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Cầu phương Gauss 2 điểm

Cho n = 2, các điểm cầu phương Gauss là nghiệm của đa thức Legendre
với n = 2, tức là nghiệm của

1

2
(3x 2−1) = 0.

Giải phương trình, ta thu được

x0 =
p

3

3
, x1 =−

p
3

3

Đa thức nội suy Lagrange cơ bản tương ứng với x0 là ℓ0(x ) = (x−x1)/(x0−x1).
Do vậy,

c0 =

∫ 1

−1

ℓ0(x )dx =

∫ 1

−1

p
3

2

�

x +
p

3

3

�

dx = 1.

Tương tự, ta cũng tính được c1 = 1. Do đó, công thưc cầu phương Gauss đối
với n = 2 là:

∫ 1

−1

f (x )dx ≈ f

�p
3

3

�

+ f

�

−
p

3

3

�

. (5.12)

Ví dụ, lấy f (x ) = 1/(3+ x ) với
∫ 1

−1

f (x )dx =

∫ 2

−1

dx

3+ x
= ln(3+ x )

�

�

�

�

1

−1

= ln(4)− ln(2) = ln(2),

và áp dụng công thức cầu phương Gauss 2 điểm, ta thu được
∫ 1

−1

f (x )dx ≈
1

3−
p

3

3

+
1

3+
p

3

3

=
9

13
≈ 0,6923077 . . .

Giá trị gần đúng thu được chính xác tới 2 chữ số sau dấu thập phân (0,69).

Cầu phương Gauss 3 điểm

Cho n = 3, các điểm cầu phương Gauss là nghiệm của đa thức Legendre
với n = 3, tức là nghiệm của

1

2
(5x 3−3x ) = 0.

Ta được các điểm cầu phương

x0 =−

√

√3

5
, x1 = 0, x2 =

√

√3

5
.
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Bây giờ, ta cần xác định các trọng số c0, c1, c2 trong công thức
∫ 1

−1

f (x )dx = c0 f

�

−

√

√3

5

�

+ c1 f (0) + c2 f

�√

√3

5

�

.

Các trọng số tương ứng có thể được xác định thông qua việc tính tích phân
các đa thức nội suy Lagrange cơ bản tương ứng. Tuy nhiên, ta sẽ trình bày
một phương pháp sơ cấp hơn, sử dụng tính chất công thức cầu phương
Gauss n điểm sẽ trở thành công thức đúng khi áp dụng cho các hàm đa
thức bậc ≤ 2n (Định lí 5.5). Nói riêng, với f (x ) = 1, ta có

2=

∫ 1

−1

dx = c0+ c1+ c2.

Với f (x ) = x , ta có

0=

∫ 1

−1

x dx = c0 ·

√

√3

5
+ c1 ·0+ c2 ·

�

−

√

√3

5

�

.

Với f (x ) = x 2, ta có

2

3
=

∫ 1

−1

x 2 dx = c0 ·
3

5
+ c1 ·0+ c2 ·

3

5
.

Từ hai phương trình sau, ta giải được

c0 = c2 =
5

9
.

Từ đây, thay vào phương trình đầu tiên, ta thu được

c1 =
8

9
.

Như vậy, ta có công thức cầu phương Gauss 3 điểm:
∫ 1

−1

f (x )dx ≈
5

9
f

�

−

√

√3

5

�

+
8

9
f (0) +

5

9
f

�√

√3

5

�

. (5.13)

Ví dụ 5.6. Để lấy ví dụ, chúng ta trở lại vấn đề xấp xỉ ln(2). Lấy hàm dưới
dấu tích phân là f (x ) = 1/(3+ x ). Khi đó, ta có

ln(2) =

∫ 1

−1

dx

3+ x

≈
5

9

�

1

3−
p

3/5
+

1

3+
p

3/5

�

+
8

9

�

1

3+0

�

=
25

63
+

8

27
=

131

189
≈ 0,6931217 . . . .
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Kết quả này chính xác tới 4 chữ số sau dấu thập phân (0,6931).

Chú ý 5.1. Một ưu điểm của phương pháp cầu phương Gauss là nó không
dùng đến giá trị của hàm số lấy tích phân tại điểm đầu mút của đoạn lấy
tích phân. Điều này có lợi khi tính các tích phân suy rộng hội tụ, nhưng
hàm dưới dấu tích phân tiến ra vô hạn tại một hoặc hai đầu mút. Chúng ta
hãy xét ví dụ sau:

Ví dụ 5.7. Tính gần đúng tích phân suy rộng sau bằng phương pháp cầu
phương Gauss4

∫ 1

0

dx
p

sin(x )
.

Đổi biến t = 2x −1 hay x = 1
2 (t +1), dx = 1

2 dt , ta có

I =

∫ 1

0

dx
p

sin(x )
=

1

2

∫ 1

−1

dt
q

sin
�

1
2 (t +1)

�

.

Công thức cầu phương Gauss 3 điểm:

I ≈
5

9
sin−

1
2

�

1−
p

0,6

2

�

+
8

9
sin−

1
2

�

1

2

�

+
5

9
sin−

1
2

�

1+
p

0,6

2

�

.

Tính toán cụ thể, ta có

I ≈
5

9
sin−

1
2 (0,1127) +

8

9
sin−

1
2 (0,5) +

5

9
sin−

1
2 (0,8873)≈ 1,8.

Nhận xét 5.2. Trong Ví dụ 5.7, chúng ta tính tích phân suy rộng (loại 1), do
hàm số dưới dấu tích phân, hàm f (x ) = 1/

p

sin(x ) tiến ra vô hạn khi x → 0.
Điều này cho thấy một ưu điểm của công thức cầu phương Gauss so với
các công thức hình thang và công thức Simpson khi chúng ta không phải
tính giá trị của hàm số tại hai đầu mút của đoạn lấy tích phân.

Mặt khác, kết quả I ≈ 1,8 có độ chính xác thấp. Đó là vì chúng ta đã sử
dụng cầu phương Gauss với chỉ 3 điểm. Để tăng độ chính xác, có thể xem
xét áp dụng công thức cầu phương Gauss với nhiều điểm hơn.

CAS 5.4. Trong phương pháp cầu phương Gauss, chúng ta xấp xỉ tích phân
dưới dạng

∫ 1

−1

f (x )dx ≈
n
∑

j=0

c j f (x j )

4Tính hội tụ của tích phân suy rộng này dễ dàng được suy ra từ đánh giá bằng nguyên lí so

sánh, dựa trên giới hạn sin(x )/x → 1 khi x → 0 và tính hội tụ của tích phân suy rộng
∫ 1

0 x−
1
2 dx = 2.

172



5.1. TÍNH GẦN ĐÚNG TÍCH PHÂN XÁC ĐỊNH

trong đó, x j là các điểm chia, được chọn là nghiệm của đa thức Legendre
thứ n +1, còn c j là các hệ số tương ứng. Ví dụ, với n +1= 4 chúng ta có các
điểm chia và hệ số cho bởi bảng sau:

library(gaussquad)
legendre.quadrature.rules(4)[4]

## [[1]]
## x w
## 1 0,861136312 0,347854845
## 2 0,339981044 0,652145155
## 3 -0,339981044 0,652145155
## 4 -0,861136312 0,347854845

Trong kết quả thu được, cột x cho các điểm chia và cột w cho các hệ số
tương ứng.

Ví dụ sau đây minh hoạ công thức cầu phương Gauss bốn điểm để tính
tích phân hàm số f (x ) = 1/(3+ x ) trên đoạn [−1, 1] với kết quả là ln(2):

∫ 1

−1

dx

3+ x
= ln(2).

library(gaussquad)
Lq <- legendre.quadrature.rules(4)[[4]]
nodes <- Lq$x
coeffs <- Lq$w
f <- function(x) 1 / (3 + x)
result <- sum(coeffs * f(nodes))
print(result)

## [1] 0,693146417

Bạn đọc hãy so sánh kết quả này với giá trị ln(2) tính bằng các phương
pháp khác.

5.1.5 Tính tích phân bằng hàm có sẵn trong R

Với các phương pháp số đã được cài đặt trong máy tính, tích phân Gauss
trên có thể tính được gần đúng một cách nhanh chóng. Trong tiểu mục
này, chúng ta sẽ tìm hiểu hai ví dụ minh hoạ sau.

CAS 5.5. Trong R, chức năng integrate() của pracma tính gần đúng tích
phân của một hàm số một biến. Ví dụ, đoạn mã sau cho kết quả gần đúng
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0,7468241 của tích phân
∫ 1

0

e −x 2
dx .

library(pracma)

# Khai báo hàm f(x) = e^(-x^2))
f <- function(x) {

exp(-x * x)
}

# Tính tích phân của f(x) theo x trên [0, 1]
integrate(f, 0, 1)

## 0,746824133 with absolute error < 8,3e-15

CAS 5.6. Tích phân bội được tính bằng integral2() của pracma trong R.
Ví dụ sau tính

I =

∫∫

D

sin(y 2)dA,

trong đó D =
�

(x , y ): 0≤ x ≤ 1, x ≤ y ≤ 1
	

. Viết lại tích phân kép dưới dạng
tích phân lặp:

I =

∫ 1

0

dx

∫ 1

x

sin(y 2)dy .

Từ đó, áp dụng integral2() với các cận của x là 0 và 1 còn cận của y gồm
hàm số p (x ) = x và q (x ) = 1.

library(pracma)

# Hàm số dưới dấu tích phân
f <- function(x, y) sin(y^2)

# Hai cận của x: a = 0, b = 1
a <- 0; b <- 1

# Hai cận của y: p(x) = x, q(x) = 1
p <- function(x) x; q <- 1

# Tích phân kép
integral2(f, a, b, p, q)

## $Q
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## [1] 0,229848847
##
## $error
## [1] 2,67485514e-10

Kết quả thu được so với giá trị chính xác (1− cos(1))/2 có sai số rất nhỏ.

5.2 Tính gần đúng đạo hàm

Nội dung của mục này là về tính gần đúng đạo hàm của hàm số bằng các
phương pháp khai triển Taylor, công thức đạo hàm 3 điểm, 5 điểm, tính
gần đúng đạo hàm bằng đa thức nội suy và hàm ghép trơn. Tài liệu tham
khảo: T. V. Đĩnh [6, §5.1], P. K. Anh [2, §V.1], Kreyszig [9, §19.5].

5.2.1 Xây dựng công thức tính đạo hàm bằng khai triển Taylor

Nhắc lại rằng một hàm số f : (a , b )→R là khả vi tại x0 ∈ (a , b ) nếu giới hạn

ℓ= lim
h→0

f (x0+h )− f (x0)
h

tồn tại và hữu hạn. Khi đó, đạo hàm của f tại x0 được định nghĩa là

f ′(x0) = lim
h→0

f (x0+h )− f (x0)
h

.

Từ đó, chúng ta thấy một phương pháp khá đơn giản để tính gần đúng đạo
hàm f ′(x0) bằng cách tính tỉ số giữa số gia hàm số và số gia đối số h , khi h
nhỏ.

CAS 5.7. Ví dụ, chúng ta hãy thực nghiệm tính đạo hàm của hàm số

f (x ) = x 3 cos(x 2) log(
p

x ), x > 0,

tại x = 1 bằng cách tính giá trị của f (1) và f (1+ h ) với h = 10−5. Bằng R,
chúng ta tính như sau:

# Tuỳ chọn số chữ số = 9
options(digits = 9)

# Định nghĩa hàm số f(x) cần tính đạo hàm
f <- function(x) {

x^3 * cos(x^2) * log(sqrt(x))
}
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# Tính đạo hàm tại x = a với h = 1e-5
a <- 1; h <- 1e-5

# Công thức xấp xỉ đạo hàm 2 điểm
(f(a + h) - f(a)) / h

## [1] 0,270149492

Để so sánh, lưu ý rằng bằng những quy tắc tính đạo hàm quen thuộc
trong giải tích toán học, chúng ta có

f ′(1) =
cos(1)

2
≈ 0,270151.

So sánh hai kết quả ở dòng 4 và 6 chúng ta thấy sự sai khác bé hơn 2×10−6.

Chú ý 5.2. Khi h > 0, chúng ta gọi công thức ở dòng 3 là “đạo hàm tiến”
(forward derivative). Ngược lại, khi h < 0, chúng ta gọi là đạo hàm lùi
(backward derivative).

Sai số

Bây giờ, để ước tính sai số của phương pháp tính gần đúng trên, chúng ta
sẽ cần một số giả thiết về đạo hàm cấp hai của f . Điều này khá tự nhiên, vì
đạo hàm cấp 2 cho biết tốc độ biến đổi tức thời của đạo hàm cấp một theo
đối số.

Giả sử f (x ) khả vi tới cấp hai. Khi đó, khai triển Taylor của nó có dạng

f (x0+h ) = f (x0) + f ′(x0)h +
1

2
h 2 f ′′(c ),

với c nằm giữa x0 và x0+h . Do đó, nếu đạo hàm cấp hai của f bị chặn bởi
một hằng số nào đó, | f ′′(x )| ≤M , thì có đánh giá sai số:

�

�

�

�

f ′(x0)−
f (x0+h )− f (x0)

h

�

�

�

�

=

�

�

�

�

1

2
h f ′′(c )

�

�

�

�

≤
M h

2
.

Nói cách khác,

f ′(x0)≈
f (x0+h )− f (x0)

h
,

với sai số tuyệt đối không vượt quá M h/2. Với ước lượng sai số này, chúng
ta cần tính toán với |h | khá nhỏ. Nhưng khi ấy sai số tính toán trở nên lớn
hơn khi trong phép tính chúng ta chia cho h . Do đó, chúng ta muốn các
công thức gần đúng với đánh giá sai số dạng M hα, với α> 1.
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Công thức 3 điểm, công thức 5 điểm

Một ý tưởng khá đơn giản để thiết lập một công thức với sai số có bậc cao
hơn h 2 khi h → 0 như sau: Giả sử hàm số f khả vi tới cấp ba. Khai triển
Taylor tại x0 cho chúng ta

f (x0+h ) = f (x0) + f ′(x0)h +
1

2
f ′′(x0)h

2+
1

6
f ′′′(c )h 3, (5.14)

với c là một điểm phụ thuộc h nào đó trong khoảng đang xét. Tiếp theo,
thay h bằng −h , chúng ta thu được:

f (x0−h ) = f (x0) + f ′(x0)(−h ) +
1

2
f ′′(x0)(−h )2+

1

6
f ′′′(c̃ )(−h )3, (5.15)

với c̃ phụ thuộc −h . Tiếp theo, trừ hai đẳng thức (5.14) và (5.15) trên theo
vế, chúng ta thu được

f (x0+h )− f (x0−h ) = 2 f ′(x0)h +
1

6
( f ′′′(c ) + f ′′′(c̃ )))h 3.

Từ đó, chúng ta có

f (x0+h )− f (x0−h )
2h

− f ′(x0) =
1

12
( f ′′′(c ) + f ′′′(c̃ )))h 2.

Như vậy, nếu đạo hàm cấp ba của f bị chặn: | f ′′′(x )| ≤ M với mọi x ∈
(x0−h , x0+h ) thì có phép xấp xỉ

f ′(x0)≈
f (x0+h )− f (x0−h )

2h
, (5.16)

với sai số tuyệt đối không vượt quá M h 2/6. Công thức (5.16) gọi là công
thức xấp xỉ đạo hàm 3 điểm.

CAS 5.8. Chúng ta sẽ tiến thành thực nghiệm trong R với bài toán tính gần
đúng đạo hàm của hàm số dựa theo công thức (5.16). Tương tự như CAS
5.7, mã lệnh chi tiết như sau:

f <- function(x) x^3 * cos(x^2) * log(sqrt(x))
a <- 1; h <- 1e-5
(f(a + h) - f(a - h)) / (2 * h)

## [1] 0,270151153

Rõ ràng, cùng với h = 10−5, kết quả thu được ở đây tốt hơn kết quả thu
được dựa trên công thức đạo hàm tiến.

177



CHƯƠNG 5. TÍNH GẦN ĐÚNG ĐẠO HÀM VÀ TÍCH PHÂN XÁC ĐỊNH

Ở trên, chúng ta đã áp dụng công thức khai triển Taylor cho các giá trị
khác nhau của h nhằm khử các số hạng có bậc thấp của h trong công thức
đánh giá sai số. Ý tưởng này có thể mở rộng để có được các công thức xấp
xỉ đạo hàm khác như công thức 5 điểm. Ví dụ, công thức Taylor có thể viết

f (x0+2h ) = f (x0) + f ′(x0)(2h ) +
1

2
f ′′(x0)(2h )2+

1

6
f ′′′(ĉ )(2h )3. (5.17)

Kết hợp (5.17) với (5.14), chúng ta có thể khử số hạng của h 2. Cụ thể như
sau: Nhân hai vế của (5.14) với −4 rồi cộng vào (5.17), chúng ta thu được

−4 f (x0+h ) + f (x0+2h ) =−3 f (x0)−2 f ′(x0)h

+
�

−
2

3
f ′′′(c ) +

4

3
f ′′′(ĉ )

�

h 3. (5.18)

Từ đây, chúng ta thu được

f ′(x0)≈
−3 f (x0) +4 f (x0+h )− f (x0+2h )

2h
, (5.19)

với sai số tuyệt đối không vượt quá M h 2 nếu | f ′′′(x )| ≤ M với mọi x ∈
(x0, x0+2h ).

CAS 5.9. Thực nghiệm trên máy tính với h = 10−4, chúng ta thu được kết
quả sau:

f <- function(x) x^3 * cos(x^2) * log(sqrt(x))
a <- 1; h <- 1e-4
(-3 * f(a) + 4 * f(a + h) - f(a + 2 * h)) / (2 * h)

## [1] 0,270151204

Bằng các tính toán tương tự, chúng ta cũng có thể thu được công thức
nhiều điểm hơn như công thức 5 điểm

f ′(x0)≈
f (x0−2h )−8 f (x0−h ) +8 f (x0+h )− f (x0+2h )

12h
, (5.20)

với sai số không vượt quá một hằng số nhân với chặn trên của đạo hàm
cấp 5 của f . Chi tiết dành cho bạn đọc.

CAS 5.10. Thực nghiệm công thức 5 điểm trên phần mềm thống kê R như
sau:

f <- function(x) x^3 * cos(x^2) * log(sqrt(x))

a <- 1; h <- 1e-2

(f(a - 2 * h) - 8 * f(a - h) + 8 * f(a + h) - f(a + 2 * h)) / (12 * h)

## [1] 0,270151195

Đối với công thức 5 điểm, chúng ta không cần chọn h quá bé: Với
h = 0,01, kết quả thu được chính xác tới 7 chữ số đáng tin.
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5.2.2 Tính gần đúng đạo hàm bằng đa thức nội suy

Chúng ta vẫn xét bài toán tính gần đúng f ′(x ) với f : [a , b ]→R là một hàm
số giá trị thực trong tình huống giá trị của nó chỉ được biết tại một số
điểm x0, x1, . . . , xn ∈ [a , b ]. Một ý tưởng tự nhiên là chúng ta sẽ xấp xỉ đạo
hàm f ′(x ) bởi P ′n (x ), trong đó Pn (x ) là đa thức nội suy của f trên các điểm
x0, x1, . . . , xn .

Nhắc lại rằng đa thức nội suy của f (x ) tại các mốc x0, x1, . . . , xn là

Pn (x ) =
n
∑

k=0

f (xk )ℓk (x ),

trong đó, ℓk (x ) là các đa thức Lagrange cơ bản tương ứng với các mốc nội
suy đã cho. Từ đó, chúng ta có

f ′ ≈ P ′n (x ) =
n
∑

k=0

f (xk )ℓ
′
k (x ).

Rõ ràng, ℓ′k (x ) hoàn toàn được xác định khi biết các điểm nội suy xk .
Vấn đề nảy sinh bây giờ là đánh giá sai số

ε(x ) = f ′(x )−P ′n (x ). (5.21)

Định lí 5.6:

Gọi Pn (x ) là đa thức nội suy của hàm f (x ) tại n + 1 điểm nội suy
{x0, x1, . . . , xn} ⊂ (a , b ). Giả sử f (x ) có đạo hàm đến cấp n +1 bị chặn:
�

� f (n+1)(x )
�

� ≤ M với mọi x ∈ (a , b ). Khi đó, f ′(x j ) ≈ P ′(x j ), với sai số
tuyệt đối thoả mãn

�

�ε(x j )
�

�≤
M

(n +1)!

∏

k ̸= j

�

�x j − xk

�

� . (5.22)

Trong định lí trên, có một điều thú vị là mặc dù ta đánh giá sai số (5.21)
trong tính toán đạo hàm cấp một của hàm số nhưng lại đặt giả thiết lên
đạo hàm cấp n +1 của nó.

Ví dụ 5.8. Xét hàm số f (x ) = 3p
x 8. Dễ dàng thấy rằng f khả vi liên tục đến

cấp hai:

f ′(x ) =
8

3
3
p

|x |5 sign(x ), f ′′(x ) =
40

9
3
p

x 2.

Trong khi đạo hàm cấp 3 của nó là

f (3)(x ) =
80

81 3
p

|x |
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với x ̸= 0, trong khi đó đạo hàm cấp ba không tồn tại tại x = 0.
Xét h > 0 và các điểm x0 =−h , x1 = 0, x2 = h . Khi đó, đa thức nội suy của

f (x ) trên tập nội suy này là

Ph (x ) = x 2 3
p

h 2.

Do đó, ta có
P ′h (0) = f ′(0) = 0.

Tuy nhiên, do f không khả vi đến cấp 3, ta không thể áp dụng để đánh
giá sai số trong phép xấp xỉ f ′(0)≈ P ′h (0).

Trong mệnh đề sau đây, chúng ta sẽ ước lượng sai số (5.21) chỉ với điều
kiện về đạo hàm cấp hai của f , cùng với một điều kiện bị chặn của một
hàm phụ khác. Từ kết quả này có thể dễ dàng suy ra được định lí 5.6.

Mệnh đề 5.1:

Cho f (x ) là một hàm khả vi hai lần với đạo hàm cấp hai f ′′(x ) bị
chặn trên [a , b ] bởi −K và K :

�

� f ′′(x )
�

�≤ K , a ≤ x ≤ b .

Gọi Pn (x ) là đa thức nội suy của f (x ) tại các điểm nội suy phân
biệt {x0, x1, . . . , xn} ⊂ (a , b ), rn (x ) = f (x ) − Pn (x ), và s (x ), x ∈ [a , b ] \
{x0, x1, . . . , xn}, là hàm số xác định bởi

rn (x ) = s (x )
n
∏

k=0

(x − xk ). (5.23)

Giả sử |s (x )| ≤ L với mọi x ∈ [a , b ] \ {x0, x1, . . . , xn}. Khi đó,

�

� f ′(x j )−P ′n (x j )
�

�≤ L

�

�

�

�

�

∏

k ̸= j

(x j − xk )

�

�

�

�

�

. (5.24)

Chứng minh. Trước hết, nhận xét rằng vì f (x ) khả vi tới cấp hai còn Pn (x )
là một đa thức nên rn (x ) khả vi tới cấp hai. Hơn nữa, (5.29) có thể được viết
lại là

rn (x ) =







s (x )
n
∏

k=0

(x − x j ) x ̸∈ {x0, . . . , xn}

0 x ∈ {x0, . . . , xn}
. (5.25)

Ấn định j ∈ {0,1, 2, . . . , n} tuỳ ý và khai triển Taylor hàm rn (x ) trong lân cận
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của x j , chúng ta có

rn (x ) = rn (x j ) + r ′n (x j )(x − x j ) +
r ′′n (c )

2!
(x − x j )

2, (5.26)

với c là một điểm phụ thuộc x và nằm giữa x j và x . Lưu ý rằng rn (x j ) = 0

nên, cùng các đẳng thức (5.25) và (5.26), chúng ta suy ra

r ′n (x j )(x − x j ) +
r ′′n (c )

2!
(x − x j )

2 = s (x )
n
∏

k=0

(x − xk ), x ̸∈ {x0, x1, . . . , xn}.

Chia hai vế cho x − x j ̸= 0 và chuyển một số hạng sang vế phải, chúng ta
thu được

r ′n (x j ) =−
r ′′n (c )

2!
(x − x j ) + s (x )

∏

k ̸= j

(x − xk ). (5.27)

Theo giả thiết, f ′′(x ) bị chặn trên [a , b ] nên r ′′n (x ) = f ′′(x )−P ′′n (x ) cũng bị
chặn trên [a , b ]: Với mọi x ∈ [a , b ],

|r ′′n (x )| ≤ K̃ .

Từ đó, cùng với bất đẳng thức tam giác, chúng ta thu được

�

�r ′n (x j )
�

�≤
K̃

2
|x − x j |+ L

∏

k ̸= j

|x − xk |, x ̸∈ {x0, x1, . . . , xn}.

Cho x → x j và lấy giới hạn hai vế, chúng ta thu được

�

�r ′n (x j )
�

�≤ L
∏

k ̸= j

|x j − xk |. (5.28)

Chúng ta kết thúc chứng minh.

Chứng minh Định lí 5.6. Nếu f có đạo hàm đến cấp n +1 thì chúng ta có
công thức sai số dạng

f (x ) = Pn (x ) + s (x )
n
∏

k=0

(x − xk ). (5.29)

Trong đó,

s (x ) =
f (n+1)(ξ(x )))
(n +1)!

, (5.30)

trong đó ξ(x ) tồn tại và phụ thuộc vào x .
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Từ giả thiết về đạo hàm cấp n +1 của f , chúng ta suy ra

|s (x )| ≤
M

(n +1)!

và từ đó suy ra kết luận của định lí bằng cách áp dụng mệnh đề 5.1 với
L =M /(n +1)!.

Chú ý 5.3. Một số sách đưa ra những cách chứng minh ngắn hơn cho cho
định lí 5.6, nhưng một số lập luận trong chúng không chặt chẽ. Ví dụ, trong
[4], hai tác giả Burden và Faires lấy đạo hàm hai vế của (5.29) để thu được

f ′(x j ) = P ′n (x j ) + f (n+1)(ξ(x j ))

 

1

(n +1)!

n
∏

k=0,k ̸= j

(x j − xk )

!

.

Tuy nhiên, đây là một phương trình vô nghĩa, do ξ(x j ) không xác định!

CAS 5.11. Người ta thả một vật rơi trong không khí từ một độ cao 20m và
đo khoảng cách từ vật đó tới vị trí ban đầu sau mỗi khoảng thời gian 1s.
Kết quả được ghi trong bảng sau:

Thời gian (s) 0 1 2 3 4

Quãng đường (m) 0 1,811 6,254 12,293 19,301

Dùng phương pháp nội suy hãy tính gần đúng vận tốc của vật tại thời điểm
t = 2s (có thể sử dụng máy tính).

Gọi P4(t ) là đa thức nội suy của bộ dữ liệu trên. Chúng ta có thể coi P ′4 (2)
là một giá trị xấp xỉ của vận tốc tại t = 2. Thực hành trên máy tính như sau:

# Tính gần đúng đạo hàm bằng đa thức nội suy.
# Thư viện polynom có sẵn trong R.

library(polynom)

# Các dữ liệu ban đầu

t <- c(0, 1, 2, 3, 4)
s <- c(0, 1.811, 6.254, 12.293, 19.301)

# poly.calc trong gói polynom tính đa thức nối suy

p <- poly.calc(t, s)

# deriv() tính đạo hàm của đa thức p
p_prime <- deriv(p)
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# as.function() chuyển một đa thức về một hàm số đa thức

p_prime_func <- as.function(p_prime)
print(p_prime_func(2))

## [1] 5,37958333

Trong chương trình R phía trên, chúng ta tính đạo hàm của đa thức nội
suy tại t = 2 và thu được v (2)≈ 5,379583 (m/s), là giá trị xấp xỉ của vận tốc
của vật rơi tại t = 2 giây.

Nhận xét 5.3. Trong ví dụ trên, vật rơi do tác dụng của trọng lực và chịu
lực cản của không khí. Quãng đường đi được của vật, tính từ vị trí ban đầu,
được cho bởi một công thức dạng

s (t ) = s0+ v t +
v

k
(exp(−k t )−1),

trong đó, v là vận tốc pha cuối (terminal velocity), và k = b /m , với b là hệ
số lực cản không khí (phụ thuộc vào kích thước của vật và không khí) và m
là khối lượng của vật.

Từ bảng trên, người ta có thể xác định được các hệ số s0, v , và k . Các giá
trị của tham số cụ thể là s0 = 0, v = 8,5 và k = 0,5. Như vậy,

s (t ) = 8,5t +17(exp(−0,5t )−1).

Do đó, vận tốc của nó cho bởi

v (t ) = 8,5(1−exp(−0,5t )).

Từ công thức cuối cùng, chúng ta tính được v (2)≈ 5,373025. Bạn đọc hãy so
sánh hai kết quả và rút ra nhận xét.

5.3 Câu hỏi và bài tập

1. Một vật bắt đầu chuyển động thẳng với vận tốc thay đổi theo thời gian
được tính bởi công thức v (t ) = 1/(5+

p
t ) (m/s).

(a) Sử dụng quy tắc hình thang với số khoảng chia bằng 4, tính gần
đúng quãng đường vật đi được trong khoảng thời gian từ t = 1 đến
t = 5 giây.

(b) Sử dụng quy tắc Simpson với số khoảng chia bằng 4, tính gần đúng
đến 3 chữ số sau dấu thập phân quãng đường vật đi được trong
khoảng thời gian từ t = 1 đến t = 5 giây [Trả lời: 0,599 (m).]

2. Tính gần đúng các tích phân sau đây bằng quy tắc hình thang và quy
tắc Simpson với và đánh giá sai số của các kết quả gần đúng thu được.
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(a)

∫ 2

1

x 2 dx ,

(b)

∫ 2

1

x−2 dx ,

(c)

∫ 5

1

dx

x
,

(d)

∫
π
2

1

Æ

4− sin2(x ) dx .

3. Tính gần đúng tích phân
π
2
∫

0

cos(x )
1+ x

dx

với 4 chữ số đáng tin.
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CHƯƠNG 6. GIẢI GẦN ĐÚNG PHƯƠNG TRÌNH VI PHÂN

6.1 Bài toán giá trị ban đầu

Trong mục này, chúng ta bắt đầu với bài toán cơ bản của lí thuyết phương
trình vi phân, đó là bài toán giá trị ban đầu, hay còn gọi là bài toán Cauchy.
Trong các mục tiếp theo, chúng ta tìm hiểu một số phương pháp tính gần
đúng nghiệm của phương trình vi phân của bài toán giá trị ban đầu.

Bài toán tìm hàm y = y (x ) trên đoạn [a , b ] sao cho

�

y ′ = f (x , y ), x ∈ [a , b ],
y (a ) =α,

(6.1)

với α là một giá trị cho trước, gọi là bài toán giá trị ban đầu (initial value
problem–IVP) của phương trình vi phân y ′ = f (x , y ). Điều kiện y (a ) = α
thường được gọi là điều kiện giá trị ban đầu (hay điều kiện Cauchy).

Bài toán giá trị ban đầu có thể có nghiệm duy nhất, vô nghiệm, hoặc
có nhiều nghiệm. Hơn nữa, nghiệm của bài toán giá trị ban đầu có thể chỉ
tồn tại trong một khoảng nào đó của điểm ban đầu.

Ví dụ 6.1. Xét bài toán giá trị ban đầu

�

y ′ =py ,

y (0) = 0.

Dùng phương pháp tách biến đã biết trong môn giải tích, chúng ta đưa
phương trình về dạng

dy
p

y
= dx .

Lấy tích phân hai vế,
∫

dy
p

y
=

∫

dx = x +C .

Từ đó, ta suy ra

y (x ) =
(x +C )2

4
.

Với C = 0, chúng ta thu được nghiệm y = x 2/4 thỏa mãn bài toán Cauchy.
Mặt khác, y = 0 cũng thỏa mãn bài toán đó. Như vậy, bài toán giá trị ban
đầu trên có nhiều hơn một nghiệm.
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Ví dụ 6.2. Xét bài toán giá trị ban đầu
�

y ′ = y 2,

y (0) = 1.

Dùng phương pháp tách biến, chúng ta có thể giải được

y (x ) =
−1

x +C
.

Thay x = 0, y = 1, ta thu được phương trình của C :

1=
−1

C
,

và do đó, C =−1, nên

y =
1

1− x
.

Như vậy, nghiệm của bài toán không xác định tại điểm x = 1.

Trong các phương pháp số để giải các bài toán giá trị ban đầu, chúng ta
yêu cầu các bài toán đó là có nghiệm và nghiệm là duy nhất. Để có được
hai điều này, về lí thuyết, chúng ta có thể dựa vào định lí sau:

Định lí 6.1:

Giả sử f (x , y ) là một hàm hai biến xác định và liên tục trên hình chữ
nhật R = [x0−a , x0+a ]× [α−β ,α+β ], a > 0,β > 0, sao cho f (x , y ) và
đạo hàm riêng fy (x , y ) là bị chặn trên R : Với các hằng số K > 0, M > 0
nào đó,

| f (x , y )| ≤ K , | fy (x , y )| ≤M , (x , y ) ∈R . (6.2)

Khi đó, bài toán giá trị ban đầu

y ′ = f (x , y ), y (x0) =α (6.3)

có nghiệm duy nhất y (x ) trên một khoảng x0 − ε < x < x0 + ε, với
ε> 0 nào đó.

6.2 Phương pháp Euler

Chúng ta bắt đầu với phương pháp cơ bản nhất để giải gần đúng phương
trình vi phân, đó là phương pháp Euler1. Mặc dù phương pháp này không
phải là phương pháp cho kết quả chính xác nhất, nhưng nó lại rất đơn giản

1Leonhard Euler (1707 – 1783) là một nhà toán học người Thụy Sỹ.
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và có thể dễ dàng mở rộng cho các tình huống phức tạp hơn, như việc giải
các phương trình vi phân bậc cao, các hệ phương trình lớn, hay phương
trình vi phân ngẫu nghiên, v.v. Tài liệu tham khảo: T. V. Đĩnh [6, §6.1].

6.2.1 Mô tả phương pháp Euler

Trong phương pháp Euler (còn gọi là phương pháp Euler–Cauchy) giải gần
đúng phương trình (6.1), chúng ta bắt đầu bằng việc chia đoạn [a , b ] thành
n đoạn nhỏ bởi các điểm chia

a = x0 < x1 < · · ·< xn = b

và tính gần đúng các giá trị của nghiệm duy nhất y (x ) tại các điểm này, tức
là chúng ta sẽ xấp các giá trị y (xi ), i = 0,1, 2, . . . , n . Như vậy, chúng ta sẽ xây
dựng dãy u0, u1, . . . , ui , . . . sao cho ui xấp xỉ y (xi ):

ui ≈ y (xi ).

Rõ ràng, với i = 0, chúng ta có y (x0) =α, theo điều kiện ban đầu nên cần
chọn

u0 =α.

Giả sử ta xây dựng được ui xấp xỉ giá trị (đúng) y (xi ), khai triển Taylor của
y tại xi có dạng

y (x ) = y (xi ) + y ′(xi )(x − xi ) +
y ′′(ci )

2
(x − xi )

2

với ci là một điểm nằm giữa x và xi . Vì y là nghiệm của phương trình vi
phân (6.1) nên

y ′(xi ) = f (xi , y (xi )).

Thay giá trị này vào khai triển Taylor ở trên, chúng ta thu được

y (x ) = y (xi ) + f (xi , y (xi ))(x − xi ) +
y ′′(ci )

2
(x − xi )

2. (6.4)

Hai số hạng đầu tiên ở vế phải hoàn đã biết, nếu chúng ta đã xác định được
y (xi ). Số hạng cuối cùng rất bé khi x ≈ xi , có thể bỏ qua trong phép tính
gần đúng.

Đặc biệt, nếu các điểm chia x j , j = 0,2, . . . , n là cách đều,

x j = x0+ j h ,

thì với x = xi+1 chúng ta có

y (xi+1) = y (xi ) + f (xi , y (xi ))h +
y ′′(ci )

2
h 2. (6.5)
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với ci phụ thuộc h . Từ đây, ta xác định

ui+1 := ui + f (xi , ui )h . (6.6)

Công thức này cho phép chúng ta xác định theo quy nạp dãy ui khi biết
u0 = α. Phương pháp tính ui theo công thức truy hồi (6.6) gọi là phương
pháp Euler.

6.2.2 Sự hội tụ và sai số của phương pháp Euler

Sai số của phương pháp Euler là sai số thực sự của các xấp xỉ y (xi ) bởi ui .
Chúng ta gọi các sai số này là εi :

εi := y (xi )−ui . (6.7)

Định lí dưới đây cho một ước lượng của sai số trong phương pháp này.

Định lí 6.2:

Giả sử hàm f (x , y ) trong phương trình (6.1) thỏa mãn
�

�

�

�

∂ f

∂ y

�

�

�

�

≤ L , (6.8)

và nghiệm của nó thỏa mãn
�

�y ′′
�

�≤ K , (6.9)

trong đó K và L là các hằng số dương. Khi đó

|εi | ≤
K

2L
h
�

e L (xi−x0)−1
�

+ |ε0|e L (xi−x0). (6.10)

Như vậy, nếu sai số ban đầu bằng 0, ε0 = 0, thì sai số tại điểm xi hội
tụ về 0 khi h→ 0.

Chứng minh. Từ các phương trình (6.5) và (6.6) ta thu được

εi+1 = ui+1− y (xi+1)

=
�

ui + f (xi , ui )h
�

−
�

y (xi ) + f (xi , y (xi ))h +
y ′′(ci )

2
h 2
�

=
�

ui − y (xi )
�

+h
�

f (xi , ui )− f (xi , y (xi ))
�

−
y ′′(ci )

2
h 2

= εi +h
�

f (xi , ui )− f (xi , y (xi ))
�

−
y ′′(ci )

2
h 2.
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Từ công thức Lagrange, ta có

f (xi , ui )− f (xi , y (xi )) =
∂ f

∂ y
(xi , di )(ui − y (xi )).

Kết hợp với điều kiện |∂ f /∂ y | ≤ L , ta thu được
�

� f (xi , ui )− f (xi , y (xi ))
�

�≤ L |ei |.

Vậy

|εi+1| ≤ |ei |(1+ Lh ) +K h 2/2.

Bất đẳng thức này đúng với i = 0,1,2, . . . với các hằng số K , L , và h không
phụ thuộc i . Bằng quy nạp, ta dễ dàng suy ra từ đó bất đẳng thức

|εk | ≤ (1+ Lh )k |ε0|+
K h 2

2

k−1
∑

i=0

(1+ Lh )i

Mặt khác, ta có (với Lh > 0)

k−1
∑

i=0

(1+ Lh )i =
(1+ Lh )k −1

(1+ Lh )−1
=
(1+ Lh )k

Lh
−

1

Lh
≤

1

Lh

�

e k Lh −1
�

.

Ở trên, ta đã áp dụng bất đẳng thức 1 + Lh < e Lh (Bất đẳng thức này
có thể được chứng minh như sau: Khai triển Taylor hàm mũ tại 0, ta có
e Lh = 1+Lh + 1

2 e c (Lh )2 > 1+Lh , ở đây c là một giá trị nằm giữa 0 và Lh). Ta
thu được

|εk | ≤
K

2L
h
�

e Lk h −1
�

+ e Lk h |e0|.

Trong công thức đánh giá sai số trong định lí trên, cần giả thiết rằng
trong mỗi phép tính trung gian, các kết quả trung gian thu được là hoàn
toàn chính xác. Giả thiết này không còn phù hợp với thực tế, đặc biệt là khi
chúng ta cần chọn h nhỏ, bởi vì khi đó số các phép tính tăng lên và ảnh
hưởng của sai số tính toán đến kết quả cuối cùng là đáng kể.

Cụ thể hơn, nếu ũ j là xấp xỉ của u j , với sai số tuyệt đối không vượt quá
δ > 0 thì ta có thể chứng minh được

|ek | ≤
1

L

�

h K

2
+
δ

h

�

h
�

e Lk h −1
�

+ e Lk h |e0|. (6.11)

Do đó, bước đi h “tốt nhất” là bước đi sao cho h K
2 +

δ
h bé nhất. Vì K và δ là

các số dương nên có đánh giá

h K

2
+
δ

h
≥ 2

√

√h K

2
·
δ

h
=
p

2K δ.
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Dấu bằng xảy ra khi và chỉ khi

h K

2
=
δ

h
,

hay
h =

p

2δ/K .

Đó là ngưỡng mà khi lấy bước đi h bé hơn nó thì sai số tính toán sẽ ảnh
hưởng lớn hơn sai số lí thuyết. Vì vậy, trong thực hành, người ta thường lấy
h >

p

2δ/K .

Ví dụ 6.3. Sử dụng phương pháp Euler để giải gần đúng bài toán giá trị
ban đầu sau đây

�

y ′ = x e 2x −2y , 0≤ x ≤ 1,

y (0) = 0,

với h = 1
2 .

Lời giải

Phương pháp Euler với h = 1
2 cho phép tính gần đúng giá trị của nghiệm tại

các nút x0 = 0, x1 =
1
2 , và x2 = 1. Gọi các giá trị gần đúng này là u0, u1, và u2.

Khi đó, với f (x , y ) = x e 2x −2y , ta có

u0 = y (0) = 0,

u1 = u0+h f (x0, u0) = 0+
1

2
×
�

0× e 2×0−2×0
�

= 0,

u2 = u1+h f (x1, u1) = 0+
1

2
×
�

1

2
× e 2× 1

2 −2×0
�

=
e

4
.

Nói riêng y (1)≈ e /4. Trong lời giải trên, chúng ta đã chọn h = 0,5 để minh
hoạ phương pháp Euler. Khi đó, kết quả cho sai số khá lớn. Thật vậy, bài
toán giá trị ban đầu trong Ví dụ 6.3 trên có thể giải theo công thức

y =
1

16

�

e 2x (4x −1) + e −2x
�

. (6.12)

Từ đó, tính gần đúng được y (1)≈ 1,393906.
Để có các xấp xỉ tốt hơn, chúng ta thường phải chọn h bé hơn và số

bước lặp nhiều hơn. Tuy nhiên, lưu ý rằng khi bước đi h nhỏ hơn thì quá
trình tính toán phức tạp hơn và sai số tính toán trở nên lớn hơn. Tuy nhiên,
với sự trợ giúp của máy tính, chúng ta có thể thực hiện phương pháp Euler
với hàng triệu bước đi.

CAS 6.1. Chương trình R sau đây sẽ thực hiện các phép tính trong phương
pháp Euler cho phương trình trong Ví dụ 6.3, với khoảng hai triệu bước đi
và cho kết quả chính xác tới phần triệu.
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# Phương pháp Euler giải phương trình vi phân cấp một.

euler_method <- function(f, a, b, n, alpha) {
h <- (b - a) / n # n = số bước đi
x <- a # Điểm bắt đầu
y <- alpha # Giá trị ban đầu

# Bắt đầu vòng lặp của phương pháp Euler
for (i in 1:n) {

y <- y + h * f(x, y)
x <- x + h

}
return(y)

}

# Chạy thử euler_method()

f <- function(x, y) x * exp(2 * x) - 2 * y # Vế phải
result <- euler_method(f, 0, 1, 1e6, 0)
print(result)

## [1] 1,39390508

Lúc đó, với bước đi h = 10−6, tức là số bước đi 106, chúng ta cũng có thể
thu được y (1) ≈ 1,39390508. Lưu ý rằng nếu tính giá trị của nghiệm theo
công thức giải tích (6.12) bằng R, chúng ta cũng thu được kết quả như vậy.

Dưới đây, chúng ta xây dựng công thức gần đúng để đánh giá sai số
trong phương pháp Euler một cách thiết thực hơn. Cơ sở nó là công thức
khai triển tiệm cận của sai số, được phát biểu trong định lí sau đây:

Định lí 6.3:

Gọi y (x , h ) là nghiệm gần đúng được tính bởi phương pháp Euler
đối với bài toán Cauchy với bước nhảy h > 0. Khi đó,

y (x , h ) = y (x ) + c1(x )h + c2(x )h
2

+ · · ·+ cp (x )h
p +O (h p+1), (6.13)

với c j (x ) là các hệ số không phụ thuộc h .

Chứng minh của Định lí 6.3 nằm ngoài khuôn khổ của tài liệu này. Bạn
đọc có thể tham khảo Hans Stetter [11].
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Nói riêng, với p = 1 thì (6.13) trở thành

y (xi , h ) = y (xi ) + c1(x )h +O (h 2), (6.14)

y
�

xi ,
h

2

�

= y (xi ) + c1(x )
h

2
+O (h 2). (6.15)

Dùng (6.15) để khử số hạng tuyến tính đối với h ở vế phải của (6.14), ta thu
được

y (xi , h )−2y
�

xi ,
h

2

�

=−y (xi ) +O (h 2). (6.16)

Phương trình này có thể viết lại như sau

ε

�

xi ,
h

2

�

= y (xi )− y
�

xi ,
h

2

�

= y
�

xi ,
h

2

�

− y (xi , h ) +O (h 2). (6.17)

Trong vế phải của phương trình (6.17), số hạng O (h 2) bé so với h khi h bé.
Hai số hạng còn lại có thể tính được cụ thể. Từ đó, chúng ta thu được đánh
giá gần đúng sai số của nghiệm của lược đồ Euler với bước đi h/2 như sau:

ε

�

xi ,
h

2

�

≈ y
�

xi ,
h

2

�

− y (xi , h ). (6.18)

Nhận xét 6.1. Chương trình R trong CAS 6.1 không lưu lại các giá trị trung
gian mà chỉ giữ lại giá trị cuối cùng, là một xấp xỉ của y (1). Chúng ta có thể
dễ dàng sửa đổi chương trình trên để kết quả trả về là một dãy các giá trị
của yi tại các giá trị xi = x0+ i h .

CAS 6.2. Xét bài toán Cauchy
�

y ′ = y + x 2,

y (0) = 1.
(6.19)

Chương trình R sau đây tính gần đúng giá trị của nghiệm trên các điểm
lưới với bước đi h = 0,1 và biểu diễn chúng trên mặt phẳng toạ độ.

# Phương pháp Euler giải phương trình vi phân cấp một.

euler_method <- function(f, a, b, n, alpha) {
h <- (b - a) / n
x <- seq(a, b, by = h)
y <- numeric(n + 1)
y[1] <- alpha

# Vòng lặp theo phương pháp Euler
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for (i in 1:n) {
y[i + 1] <- y[i] + h * f(x[i], y[i])

}
return(data.frame(x = x, y = y))

}

Tiếp theo, chúng ta plot các giá trị tính bằng phương pháp Euler cùng
với đồ thị của nghiệm giải tích. Kết quả thu được như sau là Hình 6.1, trong
đó, đường đồ thị nét liền biểu diễn hàm số

y =−2+3e x −2x − x 2,

là công thức giải tích của nghiệm của bài toán Cauchy (6.19), và các chấm
tròn biểu diễn các điểm (xi , yi ) với yi ≈ y (xi ) được tính từ phương pháp
Euler.

6.2.3 Phương pháp Euler ngược

Phương pháp Euler ngược (backward Euler method) là một phương pháp
giải số được sử dụng để giải phương trình vi phân thường (ODE), đặc biệt
hữu ích khi cần đảm bảo tính ổn định của nghiệm trong các bước thời gian
dài. Đây là phương pháp ẩn, có nghĩa là ở mỗi bước thời gian, chúng ta cần
giải một phương trình để tìm giá trị tiếp theo.

Đối với bài toán Cauchy

dy

dx
= f (x , y ), y (x0) =α, (6.20)

dãy xấp xỉ của nghiệm dọc theo các điểm xi = x0+ i h , i = 1,2, . . . được xác
định theo công thức

ui+1 = ui + f (xi+1, ui+1), (6.21)

với giá trị ban đầu u0 =α. Như đã nói, chúng ta cần giải (6.21) để thu được
công thức truy hồi cho dãy ui .

Ví dụ 6.4. Xét bài toán giá trị ban đầu

dy

dx
=−2y + x , y (0) = 1.

Chúng ta sẽ sử dụng phương pháp Euler ngược với bước đi h = 0,1 để xấp
xỉ nghiệm của phương trình này.

Sử dụng công thức (6.21) trong đó, hàm f (x , y ) =−2y + x , vì vậy

ui+1 = ui +h · (−2ui+1+ xi+1)
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# Ví dụ

f <- function(x, y) y + x^2 # Vế phải của phương trình

solution <- euler_method(f, 0, 1, 10, 1)
plot(solution$y ~ solution$x, xlab = "x", ylab = "y")
exact_soln <- function(x) -2 + 3 * exp(x) - 2 * x - x^2
curve(exact_soln, from = 0, to = 1, add = TRUE)

0,0 0,2 0,4 0,6 0,8 1,0

1,
0

1,
5

2,
0

2,
5

3,
0

x

y

Hình 6.1: Đồ thị của nghiệm giải tích và các giá trị của nghiệm tính bằng
phương pháp Euler
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Từ đó ta có công thức truy hồi là

ui+1 =
ui +h xi+1

1+2h
(6.22)

Từ điều kiện ban đầu, ta có x0 = 0, h = 0,1, và u0 = 1. Việc tính toán ui có thể
được thực hiện một cách tuần tự.

Ví dụ, với i = 0, ta có

u1 =
u0+h x1

1+2h
=

1+0,1× (0+0,1)
1+2×0,1

≈ 0,8417,

và

u2 =
u1+h x2

1+2h
=

0,8417+0,1× (0+2×0,1)
1+2×0,1

≈ 0,7181,

Các giá trị tiếp theo được tính tương tự.

CAS 6.3. Trong CAS này, chúng ta tính các giá trị tiếp theo của ui đối với
bài toán trong Ví dụ 6.4 và biểu diễn trên mặt phẳng cùng với đồ thị của
nghiệm giải tích của nó là

y (x ) =−0,25+0,5 x +1,25e −2x .

Chi tiết như sau:

# Phương pháp Euler ngược cho phương trình y' = -2y + x

backward_euler_method <- function(x0, y0, h, n) {
x <- seq(x0, x0 + n * h, by = h)
y <- numeric(n + 1)
y[1] <- y0
for (i in 1:n) {

y[i + 1] <- (y[i] + h * x[i+1]) / (1 + 2 * h)
}
return(data.frame(x = x, y = y))

}

soln <- backward_euler_method(0, 1, 0.1, 10)
print(soln)

## x y
## 1 0,0 1,000000000
## 2 0,1 0,841666667
## 3 0,2 0,718055556
## 4 0,3 0,623379630

196



6.2. PHƯƠNG PHÁP EULER

## 5 0,4 0,552816358
## 6 0,5 0,502346965
## 7 0,6 0,468622471
## 8 0,7 0,448852059
## 9 0,8 0,440710049
## 10 0,9 0,442258374
## 11 1,0 0,451881979

# Biểu diễn nghiệm và nghiệm giải tích trên mặt phẳng toạ độ.

plot(soln$y ~ soln$x, ylim = c(0.4, 1), xlab = "x", ylab = "y")

# Công thức giải tích của nghiệm đúng và đồ thị của nó.

exact_soln <- function(x) (-1 + 5 * exp(-2 * x) + 2 * x) / 4
curve(exact_soln, from = 0, to = 1, col = "blue", add = TRUE)
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6
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8
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y

Kết quả thu được là dãy các giá trị ui thể hiện ở kết quả của print(soln)
trong khi đó kết quả của hàm plot() và curve() được thể hiện ở hình trên.

Chú ý 6.1. Với hàm f (x , y ) =−2y + x như trong Ví dụ 6.4, phương trình ẩn
(6.21) giải được rất dễ dàng. Trong những tình huống tổng quát hơn, việc
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giải ra ui+1 từ (6.21) có thể không đơn giản. Trong trường hợp ấy, người ta
có thể kết hợp với phương pháp Newton–Raphson để giải nghiệm.

6.3 Phương pháp Runge–Kutta và các phương pháp khác

Trong mục này ta giới thiệu một số phương pháp cải tiến tăng độ chính xác
của phương pháp Euler, bao gồm phương pháp sai số tiệm cận, phương
pháp hình thang, phương pháp Heun (dự báo và điều chỉnh), và cuối cùng
là phương pháp Runge–Kutta bậc 4. Tài liệu tham khảo: T. V. Đĩnh [6, §6.5].

6.3.1 Một số khái niệm

Để nói chi tiết hơn về “độ chính xác” của một phương pháp, ta cần khái
niệm vô cùng bé (infinitesimal). Xét các đại lượng φ(h ) phụ thuộc h và
φ(h )→ 0 khi h → 0. Nói cách khác, φ(h ) là một vô cùng bé khi h → 0. Nếu
tồn tại M > 0 và k sao cho

|φ(h )|<M h k ,

thì ta viết φ(h ) =O (h k ), với O viết hoa. Ta cũng nói φ(h ) là một vô cùng bé
có cỡ O (h k ).

Nếu

lim
h→0

φ(h )
h k

= 0,

thì ta viết φ(h ) = o (h k ) (với chữ o viết thường, và cũng nói φ(h ) là vô cùng
bé có bậc lớn hơn h k . Hai cách viết quy ước này được dùng rất phổ biến
trong toán học. Lưu ý, cần thận trọng để tránh nhầm lẫn các kí hiệu O lớn
và o nhỏ.

Nhắc lại rằng trong việc giải gần đúng bài toán giá trị ban đầu (6.1),
chúng ta kí hiệu ui là giá trị gần đúng của nghiệm y tính tại điểm xi và sai
số của nó được kí hiệu là

εi := y (xi )−ui .

Nếu, trong một phương pháp giải gần đúng, chúng ta có đánh giá sai số

|εi |=O (h k ), k > 0, (6.23)

khi h→ 0, thì chúng ta nói rằng phương pháp có độ chính xác cấp k . Ví dụ,
phương pháp Euler có độ chính xác k = 1, như đã biết ở mục trước. Nếu
k ≥ 2, chúng ta nói phương pháp đó có độ chính xác cao.

6.3.2 Khai triển tiệm cận của sai số

Từ Định lí 6.3, chúng ta có thể xây dựng một phương pháp có độ chính
xác cấp hai. Ý tưởng ở đây, gợi ý bởi phương pháp ngoại suy Richardson, là
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dùng hai bước đi, h và h/2, để khử số hạng bậc nhất của h trong khai triển
tiệm cận sai số trong Định lí 6.3.

Giả sử phương pháp Euler với bước h cho xấp xỉ ui của y (xi ), viết một
cách chi tiết là u (xi ;h ) để chỉ rõ bước nhảy nào được dùng để tính ui .
Tương tự như vậy, bước đi h̃ = h

2 chúng ta thu được xấp xỉ u (xi ;h/2). Cuối
cùng, đặt

v (xi ; h ) := 2u
�

xi ;
h

2

�

−u (xi ; h ). (6.24)

Khi đó, từ (6.16), chúng ta thấy dãy v (xi ; h ) xấp xỉ giá trị y (xi ) với sai số
�

�v (xi ; h )− y (xi )
�

�=O (h 2). (6.25)

Phương pháp mô tả ở trên là một cải tiến của phương pháp Euler với độ
chính xác cấp hai.

Ví dụ 6.5. Xét bài toán Cauchy trong Ví dụ 6.3. Hãy dùng phương pháp
Euler giải gần đúng bài toán với h = 1

4 .

Lời giải

Với bước đi h = 1
4 , ta có các nút x0 = 0, x1 =

1
4 , x2 =

1
2 , x3 =

3
4 , và x4 = 1. Với

f (x , y ) = x e 2x −2y , chúng ta có

u0 = 0,

u1 = u0+h f (x0, u0) = 0,

u2 = u1+h f (x1, u1) = 0+
1

4

�

1

4
× e 2× 1

4 −2×0
�

=
p

e

16
,

u3 = u2+h f (x2, u2) = · · ·=
e

8
+
p

e

32
,

u4 = u3+h f (x3, u3) = · · ·=
3e
p

e

16
+

e

16
+
p

e

64
.

Vậy,
y (1)≈ u4 ≈ 1,03597.

Kết hợp với Ví dụ 6.3, ta có

v
�

1;
1

2

�

= 2u
�

1;
1

4

�

−u
�

1;
1

2

�

= 2

�

3e
p

e

16
+

e

16
+
p

e

64

�

−
e

4

=
3e
p

e

8
−

e

8
+
p

e

64
≈ 1,39237.
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Mặt khác, từ nghiệm đúng của phương trình vi phân, ta có

y (1) =
3

16
e 2+

1

16
e −2 ≈ 1,393906.

Ta thấy sai số của v
�

1; 1
2

�

bé hơn 0,0016. Như vậy, trong ví dụ này phương
pháp đang xét có độ chính xác cao hơn phương pháp Euler với h = 1

4 .

6.3.3 Phương pháp hình thang

Phương pháp hình thang là một cải tiến của phương pháp Euler dựa trên
một ý tưởng tương tự như phương pháp hình thang trong bài toán tính
tích phân xác định đó người ta xây dựng dãy ui như sau:

u0 =α, (6.26)

ui+1 = ui +
h

2

�

f (xi , ui ) + f (xi+1, ui+1)
�

. (6.27)

Có thể chứng minh được rằng phương pháp hình thang là một phương
pháp có độ chính xác cấp 2.

Một nhược điểm của phương pháp hình thang xuất phát từ đặc điểm
ui+1 xuất hiện ở cả hai vế của (6.27). Do đó, khi tính ui+1, ta phải giải một
phương trình của ui+1. Quá trình giải sẽ cần khá nhiều năng lực tính toán
nếu phương trình cần giải là phi tuyến.

Để tránh việc phải giải nghiệm của (6.27), người ta có thể cải tiến
phương pháp này bằng cách thêm vào một quá trình lặp. Trước hết, chúng
ta xét ví dụ sau trong đó phương trình cần giải là tuyến tính

Ví dụ 6.6. Xét bài toán Cauchy
�

y ′ = y + x ,

y (1) = 0.

Tính xấp xỉ giá trị y (1,2) bằng phương pháp hình thang với bước đi h = 0,2.
So sánh với giá trị tính bởi nghiệm đúng y (x ) = 2e x−1− x −1.

Lời giải

Với bước đi h = 0,2, chúng ta chỉ tính 1 bước để xấp xỉ y (1,2), cụ thể:
f (x , y ) = y + x , u0 = 0. Theo công thức hình thang,

u1 = u0+0,1
�

f (1,0) + f (1,2; u1)
�

= 0,1 (1+u1+1,2)

Đây là một phương trình của u1. Giải phương trình (trong trường hợp này,
nó là một phương trình bậc nhất), ta thu được

u1 =
0,22

0,9
≈ 0,24.
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So sánh với công thức nghiệm giải tích y (x ) = 2e x−1− x −1,

y (1,2)≈ 0,242806,

Chúng ta thấy rằng xấp xỉ u1 = 0,24 có 2 chữ số đáng tin.

6.3.4 Phương pháp Heun

Trong tiểu mục này, ta nói về Phương pháp Heun2, còn gọi là phương
pháp “dự báo và điều chỉnh” (predictor–corrector method) hoặc phương
pháp “hình thang hiện”.

Bắt đầu với u0 =α, để tính giá trị ui+1 từ ui , ta tính một giá trị phụ, gọi
là giá trị “dự báo” (predictor):

u ∗i+1 = ui +h f (xi , ui ).

Tiếp theo, giá trị dự báo này được dùng để tính giá trị tiếp theo, gọi là giá
trị “điều chỉnh” (corrector),

ui+1 = ui +
h

2

�

f (xi , ui ) + f (xi+1, u ∗i+1)
�

= ui +
h

2

�

f (xi , ui ) + f (xi+1, ui +h f (xi , ui ))
�

. (6.28)

Dãy {ui } được dùng để xấp xỉ giá trị của nghiệm y (x ) của phương trình tại
các điểm xi .

Lưu ý, phương pháp Heun cũng có độ chính xác cấp 2, còn được gọi là
phương pháp Euler cải tiến, hoặc Runge–Kutta 2.

Bài tập 6.1. Giải bài toán Cauchy

�

y ′ = y + x ,

y (1) = 0,
(6.29)

bằng phương pháp Heun với bước đi h = 0,1 và N = 6 và phương pháp
Euler. So sánh sai số của hai phương pháp.

CAS 6.4. Phương pháp Heun có sẵn trong gói pracma của phần mềm R.
Trong CAS này, ta sử dụng chức năng có sẵn để giải ví dụ trên.

# Số các chữ số trong các kết quả bằng 4
options(digits = 4)

# Nạp thư viện pracma của R

2Karl Heun (1859–1929) là một nhà toán học người Đức.
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library(pracma)

# Hàm f(t, y) của vế phải của phương trình.
f <- function(t, y) t + y

# Gọi euler_heun() có sẵn trong pracma.
euler_heun(f, 1, 2, 0, 6, improved = TRUE)

## $t
## [1] 1,000 1,167 1,333 1,500 1,667 1,833 2,000
##
## $y
## [1] 0,0000 0,1944 0,4541 0,7907 1,2182 1,7530 2,4144

Kết quả là dãy các giá trị ti và các giá trị xấp xỉ của y (ti ).

6.3.5 Phương pháp Runge–Kutta

Trong tiểu mục này, ta nói về một phương pháp rất mạnh mẽ, được hai
nhà toán học người Đức là Carl Runge3 và Wilhelm Kutta4 xây dựng và
phát triển trong những năm 1900. Ngày nay, nó được gọi là phương pháp
Runge–Kuta 4 (RK4).

Phương pháp này thực hiện như sau: Đặt

u0 =α là giá trị ban đầu.

Giả sử ta đã tính được ui , tính ui+1 qua các bước phụ như sau:

k1 = h f (xi , ui ),

k2 = h f
�

xi +
h

2
, ui +

k1

2

�

,

k3 = h f
�

xi +
h

2
, ui +

k2

2

�

,

k4 = h f (xi +h , ui +k3) .

Giá trị ui+1 được tính qua các giá trị ở trên như sau:

ui+1 = ui +
1

6
(k1+2k2+2k3+k4) . (6.30)

Phương pháp này có độ chính xác bậc 4.

3C. Runge, Über die numerische Auflösung von Differentialgleichungen. Math. Ann., 46(2):167–
178, 1895.

4W. Kutta. Beitrag zur naherungsweisen Integration totaler Differentialgleichungen. Z. Math.
Phys., 46:435–453, 1901.
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Ví dụ 6.7. Giải gần đúng bài toán giá trị ban đầu

y ′ = x −2y +3, y (0) = 1, (6.31)

bằng phương pháp Runge-Kutta bậc 4 để tính xấp xỉ y (0,2) và y (0,4), với
bước đi h = 0,2.

Lời giải

Gọi f (x , y ) = x −2y +3. Ta bắt đầu với

x0 = 0, u0 = 1

là các giá trị ban đầu. Tiếp theo,

k1 = h f (x0, u0) = 0,2× f (0, ,1) = 0,2,

k2 = h f
�

x0+
h

2
, u0+

k1

2

�

= 0,2× f (0,1, 1,1) = 0,18,

k3 = h f
�

x0+
h

2
, u0+

k2

2

�

= 0,2× f (0,1, 1,09) = 0,184,

k4 = h f (x0+h , u0+k3) = 0,2× f (0,2, 1,184) = 0,1664.

Thay vào công thức Runge-Kutta 4, ta có

u1 = u0+
1

6
(k1+2k2+2k3+k4)

= 1+
1

6
(0,2+2×0,18+2×0,184+0,1664)

= 1,1824.

Vậy, nghiệm xấp xỉ y (0,2)≈ 1,1824. Giá trị u2 được tính tương tự.

Nhận xét 6.2. Công thức giải tích của nghiệm của bài toán giá trị ban đầu
(6.31) là

y =
1

4
(5+2x − e −2x )

Từ đây có thể tính xấp xỉ giá trị y (0,2)≈ 1,18242. So sánh với giá trị tính bởi
phương pháp Runge–Kutta, chúng ta thấy sai số của phương pháp RK4,
trong trường hợp này, không vượt quá 0,3×10−4.

CAS 6.5. Trong gói pracma của R, phương pháp Runge–Kutta 4 nằm trong
rk4(), cách sử dụng như trong ví dụ sau:
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library(pracma)

# Định nghĩa hàm số trong vế phải của phương trình
f <- function(x, y) x - 2 * y + 3

# Chạy rk4() cho thuật toán Runge-Kutta
rk4(f, 0, 0.4, 1, 2)

## $x
## [1] 0,0 0,2 0,4
##
## $y
## [1] 1,000 1,182 1,338

6.3.6 Sử dụng deSolve của R giải gần đúng phương trình vi phân

Trong mục này, chúng ta tìm hiểu gói deSolve5 có sẵn trong R để giải số
bài toán Cauchy:

( dy

dt
= f (t , y ),

y (0) =α.

Ở đây, t là biến độc lập. Tài liệu tham khảo: Bloomfield [3, Chapter 8].

CAS 6.6. Viết chương trình R, sử dụng chức năng ode() có sẵn trong gói
deSolve để giải số bài toán giá trị ban đầu

dy

dt
= t exp(2t )−p y ,

trong trường hợp p = 1 và p = 2, trên đoạn t ∈ [0,1], với điều kiện ban đầu
y (0) = 0.

Ta bắt đầu bằng việc đưa vào R hàm số ở vế phải của phương trình. Ở
đây chỉ có 1 phương trình, nên vế phải sẽ là một danh sách (list) chỉ gồm 1
mục.

# Sử dụng gói deSolve
library(deSolve)

# Định nghĩa hàm func cho vế phải của phương trình.
func <- function(t, y, p){

return(list(c(t * exp(2 * t) - p * y)))
}

5deSolve: Solvers for Initial Value Problems of Differential Equations (’ODE’, ’DAE’, ’DDE’).
DOI: https://doi.org/10.32614/CRAN.package.deSolve
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6.3. PHƯƠNG PHÁP RUNGE–KUTTA VÀ CÁC PHƯƠNG PHÁP KHÁC

Tiếp theo, đưa vào R điều kiện ban đầu y0 và dãy các điểm ti mà ta cần
tính giá trị y (ti ). Đó là 11 điểm trên đoạn [0,1] cách đều với khoảng cách
giữa hai điểm liên tiếp là h = 0,1.

# Điều kiện ban đầu
initial_value <- c(y_0 = 0)

# Dãy giá trị t cần tính
t_values <- seq(0, 1, 0.1)

Giá trị của tham số p = 2.

# Tham số p = 2
p <- 2

Bước cuối cùng, gọi hàm ode() của thư viện deSolve theo mẫu sau:

# Giải phương trình bằng ode() trong gói deSolve

result <- ode(initial_value, t_values, func, p)

Tổng hợp các bước được mô tả như trên, chúng ta thu được chương
trình R như sau:

library(deSolve)
f <- function(t,y,p){

return(list(c(t * exp(2 * t) - p * y)))
}
initial_value <- c(y_values = 0)
t_values <- seq(0, 1, 0.1)
p <- 2
result <- ode(initial_value, t_values, f, p)
print(result)

## time y_values
## 1 0,0 0,000000
## 2 0,1 0,005369
## 3 0,2 0,023248
## 4 0,3 0,057078
## 5 0,4 0,111542
## 6 0,5 0,192887
## 7 0,6 0,309336
## 8 0,7 0,471624
## 9 0,8 0,693662
## 10 0,9 0,993401
## 11 1,0 1,393908
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Kết quả là 11 giá trị gần đúng y (ti ) tại các điểm ti của nghiệm y (t ) của
bài toán Cauchy trong trường hợp tham số p = 2. Ví dụ, có thể đọc từ đầu
ra của chương trình kết quả y (0,6)≈ 0,309336.

Để giải gần đúng cho các phương trình vi phân khác, chúng ta chỉ cần
sửa đổi mã lệnh trên cho phù hợp.

6.4 Phương trình vi phân bậc cao và hệ phương trình

Dưới đây, chúng ta tìm hiểu một số mở rộng của phương pháp Euler để
giải gần đúng hệ phương trình vi phân và phương trình vi phân bậc cao.
Tài liệu tham khảo: T. V. Đĩnh [6, §6.6, 6.7].

6.4.1 Hệ phương trình vi phân

Xét một hệ phương trình vi phân

dY

dx
= F (x , Y ),

với F = ( f1, f2, . . . , fn ) là hàm giá trị vectơ với n thành phần của n + 1 biến
và Y (x ) = (y1(x ), y2(x ), . . . , yn (x ). Trong bài toán Cauchy, chúng ta thêm vào
một điều kiện dạng

Y (x0) =α ∈Rn ,

trong đó α và một vectơ cho trước.
Với xấp xỉ đầu tiên, ta chọn

U0 =α.

Với bước đi h , ta viết
x j = x0+ j h .

Trong phương pháp Euler, Uj được tính theo công thức truy hồi

Uj+1 =Uj +h F (x j ,Uj ).

Ví dụ 6.8. Giải xấp xỉ phương trình

y ′1 = x + y1 y2,

y ′2 = x 2− y 2
1 ,

với điều kiện ban đầu

y1(0) = 1,

y2(0) = 0,

bằng phương pháp Euler với bước đi h = 0,1.
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6.4. PHƯƠNG TRÌNH VI PHÂN BẬC CAO VÀ HỆ PHƯƠNG TRÌNH

Lời giải

Chúng ta xấp xỉ nghiệm Y = (y1, y2) tại các giá trị x j = 0+ j h = 0,1 j bởi các
vectơ Uj = (u1, j , u2, j ), tính theo phương pháp Euler với các tham số như
sau:

h = 0,1, U0 = (u1,0, u2,0) = (1,0) (điều kiện ban đầu),

và
�

u1, j+1 = u1, j +h (x j +u1, j u2, j ),
u2, j+1 = u2, j +h (x 2

j −u 2
1, j ).

Từ đó, tính cụ thể ta được

u1,1 = 1+0,1(0+1×0) = 1,

u2,1 = 0+0,1(02−12) =−0,1.

Các giá trị tiếp theo được tính hoàn toàn tương tự.

CAS 6.7. Viết code R, sử dụng ode() của deSolve, để giải xấp xỉ hệ phương
trình

dx

dt
= p t + x y ,

dy

dt
= t 2− x 2,

trên đoạn [0, 1], với điều kiện bạn đầu

x (0) = 1,

y (0) = 0,

với bước đi h = 0,1, và tham số p = 2.
Tương tự như ví dụ trước, chi tiết chương trình của chúng ta như sau:

library(deSolve)

# Định nghĩa hàm ở vế phải của phương trình
f <- function(t, y, p){

return(list(c(p * t + y[1] * y[2], t^2 - y[1]^2)))
}

# Giá trị ban đầu
initial_value <- c(x_values = 1, y_values = 0)

# Dãy các giá trị của t tại đó cần tính xấp xỉ nghiệm
t_values <- seq(0,1,0.1)
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# Tham số p = 2
p <- 2

# Giải phương trình bằng ode() và hiển thị kết quả
result <- ode(initial_value, t_values, f, p)
print(result)

## time x_values y_values
## 1 0,0 1,000 0,0000
## 2 0,1 1,005 -0,1000
## 3 0,2 1,020 -0,2000
## 4 0,3 1,044 -0,3000
## 5 0,4 1,077 -0,4000
## 6 0,5 1,118 -0,4999
## 7 0,6 1,165 -0,5997
## 8 0,7 1,217 -0,6992
## 9 0,8 1,274 -0,7980
## 10 0,9 1,334 -0,8956
## 11 1,0 1,395 -0,9914

6.4.2 Phương trình vi phân cấp cao

Một phương trình vi phân cấp cao có thể đưa về hệ phương trình vi phân
cấp một bằng cách đặt các đạo hàm bậc thấp là các biến mới. Từ đó, chúng
ta có thể áp dụng các phương pháp giải hệ phương trình vi phân cấp một
để giải.

CAS 6.8. Xét phương trình nổi tiếng của van der Pol6 sau đây,

z ′′−µ(1− z 2)z ′+ z = 0.

Phương trình này có thể được đưa về hệ phương trình vi phân cấp một
bằng cách đặt y = z ′ and x = z ). Khi đó,

y ′ = z ′′,

và vậy thì (′ = d /dt )
�

x ′ = y ,

y ′ =µ(1− x 2)y − x = 0.
.

Giả sử chúng ta cần giải phương trình này với điều kiện ban đầu

x (0) = 2, y (0) = 0.

6B. van der Pol and J. van der Mark. Frequency de multiplication. Nature, 120:363–364, 1927.
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Hệ phương trình có thể được giải bằng R như sau:

library(deSolve)

# Vế phải của phương trình van der Pol

vdpol <- function(t, y, mu){
return(list(c(y[2], mu * (1 - y[1]^2) * y[2] - y[1])))

}

# Giá trị ban đầu, giá trị cần giải.

initial_value <- c(x_values = 2, y_values = 0)
t_values <- seq(0, 1, 0.1)

# Tham số mu

mu <- 1000

# Giải phương trình bằng ode() của deSolve

result <- ode(initial_value, t_values, vdpol, mu)
print(result)

## time x_values y_values
## 1 0,0 2,000 0,0000000
## 2 0,1 2,000 -0,0006667
## 3 0,2 2,000 -0,0006667
## 4 0,3 2,000 -0,0006668
## 5 0,4 2,000 -0,0006668
## 6 0,5 2,000 -0,0006669
## 7 0,6 2,000 -0,0006669
## 8 0,7 2,000 -0,0006669
## 9 0,8 1,999 -0,0006670
## 10 0,9 1,999 -0,0006670
## 11 1,0 1,999 -0,0006670

6.5 Sơ lược về bài toán biên

Những bài toán trong đó điều kiện cho nghiệm của một phương trình vi
phân phải thoả mãn được đặt ra tại cả hai đầu mút của một đoạn [a , b ]
được gọi là bài toán biên (boundary-value problem). Những vấn đề như
vậy thường phức tạp hơn vấn đề giá trị ban đầu mà chúng ta đã nói đến
trong các mục trước.
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Chúng ta hãy bắt đầu với bài toán tuyến tính

y ′′+P (x )y ′+Q (x )y = F (x ), a < x < b (6.32)

với các điều kiện biên y (a ) = A, y (b ) = B . Sự tồn tại và duy nhất nghiệm của
bài toán biên là những vấn đề lí thuyết khá phức tạp, ngay cả với trường
hợp phương trình tuyến tính (6.32). Ví dụ, xét phương trình “dao động điều
hoà”

y ′′+λy = 0, λ> 0, (6.33)

trên khoảng (0,π) với “điều kiện biên Dirichlet”

y (0) = y (π) = 0. (6.34)

Nghiệm tổng quát của phương trình (6.33) là

y (x ) =C1 sin(
p

λ x ) +C2 cos(
p

λ x ).

Thay điều kiện biên, chúng ta có các ràng buộc đối với C1 và C2 như sau:

C2 = 0, C1 sin(
p

λπ) +C2 cos(
p

λπ) = 0.

Xảy ra hai trường hợp sau:

• Nếu sin(
p
λπ) = 0, hay

p
λ là một số nguyên7, thì C1 có thể chọn tuỳ ý.

Nghiệm của bài toán biên có dạng

y (x ) =C1 sin(k x ), k 2 =λ.

• Nếu sin(
p
λπ) ̸= 0 thì C1 bắt buộc phải bằng 0; nghiệm duy nhất của

bài toán biên là y (x ) = 0.

Ở ví dụ tiếp theo, chúng ta xét

y ′′+λy = f (x ), λ> 0, (6.35)

Khi đó, nếu
p
λ không phải là số nguyên thì (6.35) có không nhiều hơn

một nghiệm. Trong trường hợp còn lại,
p
λ là một số nguyên và nếu yp (x )

là một nghiệm của (6.35) thì (6.35) có vô số nghiệm, dạng

y (x ) =C sin(
p

λ x ) + yp (x ).

Mặt khác, cũng dễ dàng chỉ ra một số trường hợp nghiệm không tồn tại.
Một điều kiện cần để (6.35) có nghiệm đó là vế phải f (x ) phải “trực giao”

7Các giá trị λ= k 2 chính là các giá trị riêng của toán tử Laplace một chiều trên [0,π] với điều
kiện biên Dirichlet
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với không gian nghiệm của phương trình thuần nhất (6.33). Cụ thể, giả sử
tồn tại một nghiệm yp của (6.35),

f (x ) = y ′′p (x ) +λyp (x ).

Trước hết, chúng ta áp dụng công thức tích phân từng phần
∫ π

0

y ′′p (x )sin(
p

λ x ) dx = y ′p (x )sin(
p

λ x )

�

�

�

�

π

0

−
∫ π

0

y ′p (x )
d sin(

p
λ x )

dx
dx

=−
p

λ

∫ π

0

y ′p (x )cos(
p

λ x )dx

= yp (x )cos(
p

λ x )

�

�

�

�

π

0

−λ
∫ π

0

yp (x )sin(
p

λ x ) dx

=−λ
∫ π

0

yp (x )sin(
p

λ x ) dx .

Từ đó,
∫ π

0

f (x )sin(
p

λ x ) dx

=

∫ π

0

y ′′p (x )sin(
p

λ x ) dx +λ

∫ π

0

yp (x )sin(
p

λ x ) dx = 0. (6.36)

Điều kiện (6.36) là điều kiện cần để bài toán biên (6.35) có nghiệm.
Trở lại với phương trình (6.32). Ý tưởng ở đây là tìm nghiệm của nó dưới

dạng
y (x ) = u (x ) + c w (x ),

trong đó u (x ) là nghiệm của phương trình (6.32) với giá trị ban đầu

u (a ) = A, u ′(a ) = 0,

trong khi đó v (x ) là nghiệm của phương trình thuần nhất

z ′′+P (x )z ′+Q (x )z = 0.

Hằng số c sẽ được xác định sao cho u (b ) + c w (b ) = B .
Để tìm u , ta đặt v = u ′ và đưa phương trình ban đầu về hệ hai phương

trình
�

v ′ =−P (x )v −Q (x )u + F (x ),
u ′ = v.

với điều kiện ban đầu (u (a ), v (a )) = (A, 0).
Tương tự, z (x ) được xác định qua hệ phương trình vi phân cấp 1

�

z ′ =w ,

w ′ =−P (x )w −Q (x )z ,

với điều kiện ban đầu (z (a ), w (a )) = (0, 1).
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6.6 Câu hỏi và bài tập

1. Sử dụng phương pháp Euler với bước đi h = 0,1 để giải gần đúng các bài
toán Cauchy sau:

(a) y ′+0,5y = 0, 0≤ x ≤ 1, y (0) = 2.

(b) 2y ′− x y = 0, 0≤ x ≤ 1, y (0) = 1.

(c) y ′ = x 2+ y 2, 0≤ x ≤ 1, y (0) = 1.

(d) y ′ = (y + x )2, 0≤ x ≤ 1, y (0) = 0.

2. Sử dụng phương pháp Heun (dự báo và điều chỉnh) với bước đi h = 0,1
để giải gần đúng các bài toán Cauchy sau:

(a) 2y ′− x y = 0, 0≤ x ≤ 1, y (0) = 1.

(b) y ′ = x 2+ y 2, 0≤ x ≤ 1, y (0) = 1.

3. Dùng phương pháp Heun (dự báo và điều chỉnh) với bước đi h = 0,1 giải
gần đúng bài toán Cauchy trong mô hình “dân số logistic” sau:

y ′ = y − y 2, y (0) = 0,2.

4. Cho bài toán giá trị ban đầu

y ′ =
y − x

y + x
, y (0) = 1.

(a) Bằng phương pháp Euler với bước đi h = 0,1, tìm nghiệm gần đúng
của bài toán trên tại điểm x = 0,4.

(b) Bằng phương pháp Runge–Kutta 4 với bước đi h = 0,1, tìm nghiệm
gần đúng của bài toán trên tại điểm x = 0,4.

5. Sử dụng phương pháp Runge–Kutta 4 với bước đi h = 0,1, tìm gần đúng
y (0,5) với y là nghiệm của bài toán Cauchy sau:

(a) y ′ = x y 2, y (0) = 1.

(b) y ′ = 1+ y 2, y (0) = 0.

(c) y ′+ y tan(x ) = sin(2x ), y (0) = 1.

(d) y ′ = 4x 3 y 2, y (0) = 1
2 .
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