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Abstract. We prove a CR analogue of the Kazdan–Warner identity for theQ-curvature
of strictly pseudoconvex three-dimensional CR manifolds. We also prove a similar iden-
tity for the Q′-curvature introduced by Case–Yang for the case of three-dimensional
locally spherical CR manifolds. Our direct approach to the proofs of our main results
reveals an intriguing fact that identities of Kazdan–Warner type also hold for other
pseudohermitian invariants which have no Riemannian counterparts.

1. Introduction

The well-known Nirenberg problem asks which smooth functions K on the sphere
S2 ⊂ R3 can be realized as the Gauss curvature of a metric g conformal to the standard
round metric g0. If g = e2ug0 has the Gauss curvature K, then u must satisfy the
following nonlinear PDE:

e2uK = 1−∆u. (1.1)

Thus, the Nirenberg problem can be rephrased that for which K this PDE has a solution.
An important finding of Kazdan–Warner in [17] about this equation is that, on S2, a
function K for which (1.1) has a solution must satisfy an identity involving the first
spherical harmonics. This fact was generalized by Bourguignon–Ezin [1] to an identity
involving the scalar curvature and conformal Killing fields on an arbitrary manifold.
Precisely, Bourguignon and Ezin proved that on a Riemannian manifold (M, g) with
scalar curvature Rg, ∫

M
X(Rg) dVg = 0, (1.2)

holds for each conformal Killing field X on M . Since then, it has been well-understood
that many analogous identities hold for various curvature quantities (such as the Q-
curvatures [8]) on Riemannian manifolds, providing necessary conditions for the corre-
sponding prescribing curvature problems. In [12], Gover and Ørsted provided universal
principles for many identities of this type. We refer the readers to this paper and the ref-
erences therein for a detailed discussion of Kazdan–Warner type identities in conformal
and Riemannian geometries as well as for an extensive list of related references.

In CR geometry, Cheng [6] established the first CR analogue of the Kazdan–Warner
identity in the form of Bourguignon–Ezin. Cheng’s result involves the Tanaka–Webster
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scalar curvature and infinitesimal CR automorphisms. He proved that for a pseudoher-
mitian manifold (M, θ) and an infinitesimal CR automorphism X, it holds that∫

M
X(R) θ ∧ (dθ)n = 0, (1.3)

where R is the Tanaka–Webster scalar curvature. (Cheng proved this identity under
some additional conditions. The proof in full generality was given by J. Lee shortly
after, see [6].) Cheng’s result gives an obstruction for Tanaka–Webster scalar curvature
prescription problem on compact CR manifolds, which has been studied extensively, see,
e.g., Jerison–Lee [16], Felli–Uguzzoni [10], Gamara–Amri–Guemri [11], and the references
therein.

Another Kazdan–Warner-type identity in CR geometry was proved recently for the

case of the CR sphere by P.-T. Ho. In [15], Ho studiedQ
′
-curvature prescription problem,

i.e., to prescribe the projection of the Q′-curvature onto the space of CR pluriharmonic

functions, and established in [15, Theorem 1.3] a Kazdan–Warner-type identity for Q
′
-

curvature on the CR sphere.
The purpose of this paper is to prove analogues of Kazdan–Warner identity for the Q-

and Q′-curvatures on three-dimensional CR manifolds. On a three-dimensional strictly
pseudoconvex CR manifold M with a pseudohermitian structure θ, Q-curvature is de-
fined by Hirachi [13] (see also Feffermann-Hirachi [9])

Q =
4

3

(
∆bR− 2 ImA11,

11
)
, (1.4)

where A11,
11 is the contraction of a second covariant derivative of the pseudohermitian

torsion and ∆b is the nonnegative sub-Laplacian. As proved by Hirachi [13], the Q-
curvature defined as above agrees, up to a multiplicative constant, with the boundary
value of the log term coefficient of the Szegő kernel and satisfies interesting covariant
properties.

The first purpose of this paper is to prove the following Kazdan–Warner identity for
the CR Q-curvature.

Theorem 1.1. Let (M, θ) be a compact three-dimensional strictly pseudoconvex pseu-
dohermitian manifold. If X is an infinitesimal CR automorphism, then∫

M
X(Q) θ ∧ dθ = 0. (1.5)

Theorem 1.1 is analogous to Cheng’s theorem for the Tanaka–Webster scalar curvature

mentioned above and somewhat similar to Ho’s result for the Q
′
-curvature in the sphere

case. It can also be regarded as a CR counterpart of a result of Delanoë–Robert [8] for the
Q-curvature in the conformal geometry, see also Gover–Ørsted [12]. As suggested by a
referee, we point out that the CR Q-curvature on a CR manifoldM can be obtained from
the Q-curvature on the Fefferman’s S1-bundle S1×M , as exhibited in Fefferman–Hirachi
[9]. Precisely, one has Q = π∗Qg, where Qg is the Q-curvature on the four dimensional
manifold N := S1 × M , g = g[θ] is the Fefferman metric, and π : S1 × M → M is
the projection (note that Qg is S1-invariant). This suggests that Theorem 1.1 could be
deduced from the results of Delanoë–Robert [8] and Fefferman–Hirachi [9]. However, we
are not going to further details here.
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Integrating the CR Q-curvature on compact manifolds does not lead to a nontrivial
global invariant as in the conformal counterpart; in three-dimension the total CR Q-
curvature is always zero. Moreover, if θ is pseudo-Einstein, then Q-curvature vanishes
identically. In this case, Case–Yang [5] introduced the Q′-curvature, together with a
Paneitz-type operator for CR pluriharmonic functions denoted by P ′. The pair (P ′, Q′)
is a CR analogue of the pair of the Paneitz operator P and the Q-curvature on conformal
4-manifolds. We refer the readers to Case–Yang [5] and Case–Gover [4] for a detailed
discussion of the Q′-curvature and its associated Paneitz-type operator and their analo-
gies to the conformal counterparts. The second purpose of this paper is to prove the
following identity for Q′-curvature on locally spherical CR manifolds.

Theorem 1.2. Let (M, θ) be a compact three-dimensional pseudo-Einstein manifold
which is locally CR spherical. If X is an infinitesimal CR automorphism on M , then∫

M
X(Q′) θ ∧ dθ = 0. (1.6)

As suggested to the author by an anonymous referee (in 2022), it is expected that
this theorem also holds for general pseudo-Einstein manifolds not necessarily being CR
spherical. Unfortunately, the author has to leave the general case as an open question
for the readers. We would like to stress that the vanishing of the Cartan tensor on CR
spherical manifolds is essential to our proof. A direct proof of this theorem in general
case could reveal certain symmtries of pseudohermitian invariants which have not been
known to us so far.

Although Theorem 1.2 is similar to the result of P.-T. Ho mentioned above, we point

out that Theorem 1.3 in Ho [15] is for the projection Q
′
of the Q′-curvature onto the

space of CR pluriharmonic functions on the CR sphere and is related to the first spherical
harmonics (given by the complex coordinates and their conjugates), while Theorem 1.2
holds for Q′-curvature on arbitrary three-dimensional CR spherical manifolds. On the
other hand, our strategy is very different from that used in Ho [15] (and in conformal
case in Delanoë–Robert [8]), which uses explicit representations of the CR sphere and
a result of Branson–Fontana–Morpurgo [2]. In fact, our proofs are elementary which
use an usual integration-by-part argument and various commutation relations in CR
geometry given in Lee [18].

Our approach to both theorems above reveals that not only the Q-curvature but two
other related quantities also satisfy similar identities. Namely, we found that the sub-
Laplacian applied to the scalar curvature as well as the imaginary part of the double
divergence of the torsion also satisfy similar identities. This is somewhat intriguing as
these two identities, stated explicitly in Lemmas 3.1 and 3.2, seem to have no Riemannian
counterparts.

In view of Gover–Ørsted [12], we expect that the identities in Theorems 1.1 and 1.2
follow from certain universal principles in CR geometry. In fact, in [12], Gover–Ørsted
generalized Kazdan–Warner identity for arbitrary scalar invariants that are naturally
conformally variational. Such invariants are not rare, as pointed out Section 4 of that
paper. Gover–Ørsted’s result exhibits the fact that various known results regarding
generalizations of the Kazdan–Warner identity come from unique principle. However,
there could be other Kazdan–Warner-type identities which are not special cases of [12].
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For instance, it is interesting to see whether the Riemannian counterpart of Lemma 3.2
holds, i.e., whether one can replace Rg in (1.2) by ∆Rg.

CR analogues of Gover–Ørsted’s theorems are definitely interesting and deserve to be
treated thoroughly in a separate paper. In the current paper, which is rather short, we
focus and confine ourself with integration-by-parts argument which has the merit of being
elementary. Moreover, our direct approach reveals somewhat unexpected identities as
in Lemmas 3.1 and 3.2 whose existences may not be predicted from an available general
principle.

2. Preliminaries

In this section, we briefly recall some basic facts of pseudohermitian geometry. For
more details, we refer the readers to Tanaka [19], Webster [20], and Lee [18]. We also
briefly introduce the Q-curvature and Q′-curvature in CR geometry; for more details,
see Fefferman–Hirachi [9], Hirachi [13, 14], Case–Yang [5], and Case–Gover [4].

Let (M,T 1,0M) be a Levi-nondegenerate CR manifold of hypersurface type. If we
define H := Re

(
T 1,0M ⊕ T 0,1M

)
, then H is a real two-dimensional sub-bundle of the

real tangent bundle TM . If θ is a real 1-form such that ker θ = H, then the Levi-
nondegeneracy of H is equivalent to the everywhere nonvanishing of θ ∧ dθ. The char-
acteristic (or Reeb) vector field of θ is the unique vector field T such that

T ⌋ dθ = 0, θ(T ) = 1.

The real 1-form θ is called a pseudohermitian structure and (M, θ) is called a pseudo-
hermitian manifold by Webster [20].

If Z1 is any local complex vector field spanning T 1,0M locally, the admissible 1-form
dual to Z1 is the unique 1-form θ1 such that the coframe {θ1, θ1̄, θ} is dual to the frame
{Z1, Z1̄, T} and

dθ = ih11̄θ
1 ∧ θ1̄ (2.1)

for some real function h11̄. Here θ1̄ := θ1 and Z1̄ := Z1 are the complex conjugations
of the respective complex form and vector field. We shall assume that h11̄ > 0 and say
that M is strictly pseudoconvex. The Levi form is denoted by

⟨U, V ⟩ = h11̄U
1V 1̄ for U = U1Z1, V = V 1̄Z1̄. (2.2)

Tanaka [19] and Webster [20] independently introduced a canonical linear connection on
the pseudohermitian manifold (M,T 1,0M, θ). It is the connection ∇ on CTM given in
terms of a local holomorphic frame Z1 by

∇Z1 = ω1
1 ⊗ Z1, ∇Z1̄ = ω1̄

1̄ ⊗ Z1̄, ∇T = 0, (2.3)

where the connection form ω1
1 is the complex 1-form uniquely determined by

dθ1 = θ1 ∧ ω1
1 +A1̄

1θ ∧ θ1̄, ω1
1 + ω1̄

1̄ = d log h11̄. (2.4)

Here, A1̄
1 is the coefficient of the Webster torsion, defined by

Tor(T,Z1̄) := ∇TZ1̄ −∇Z1̄
T − [T,Z1̄] = A1̄

1Z1.

The structure equation for the Tanaka–Webster connection is [20]

dω1
1 = Rh11̄θ

1 ∧ θ1̄ +A1
1̄
,1̄θ

1 ∧ θ −A1̄
1
,1θ

1̄ ∧ θ, (2.5)
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where R is the (real-valued) Webster curvature.
A three-dimensional CR manifold M is locally CR spherical if it is locally CR equiva-

lent to the sphere S3 in C2. The locally spherity is characterized by the Cartan umbilical
tensor, a relative invariant of the CR structure on M , introduced by Cartan [3]. Fix
a pseudohermitian structure θ, the Cartan umbilical tensor Q can be interpreted as an
endomorphism of the (complexified) holomorphic tangent bundle CH, written locally in
Cheng–Lee [7] as

Q = iQ1
1̄θ1 ⊗ Z1̄ − iQ1̄

1θ1̄ ⊗ Z1. (2.6)

Then Q is a pseudohermitian invariant which is CR-covariant in the sense that if θ̂ = euθ
is another pseudohermitian structure, then Q̂ = e−2uQ, as proved in Cheng–Lee [7]. A
well-known formula [7, Lemma 2.2] expresses Q in terms of the covariant derivatives of
the scalar curvature and torsion as follows:

Q1
1̄ =

1

6
R,1

1̄ +
i

2
RA1

1̄ −A1
1̄
,0 −

2i

3
A1

1̄
,1̄
1̄. (2.7)

Here, the indices proceeded by a comma indicate covariant derivatives and the 0-index
indicates the derivative along the Reeb direction.

A pseudohermitian structure θ on a three-dimensional CR manifold M is said to be
pseudo-Einstein if

R,1 − iA11,
1 = 0. (2.8)

This definition was given in Case–Yang [5], extending the notion of pseudo-Einstein
CR manifolds defined by Lee [18] to the three-dimensional case, but the condition (2.8)
appeared earlier in Hirachi [13]. An equivalent condition for pseudo-Einsteinian is that
the 1-form ω1

1+ iRθ is a closed form. The last condition (after an obvious modification)
can be used to define the pseudo-Einsteinian in any dimension ≥ 3 (Lee [18]).

By Hirachi [13], when θ is pseudo-Einstein, the Q-curvature vanishes identically. In
this case, Case–Yang [5] defined the Q′-curvature. The total Q′-curvature is a secondary
invariant, in the sense that it does not change under the change of pseudo-Einstein
structures. This curvature quantity, together with its associated operator P ′, has been
studied extensively in recent years, cf. Case–Gover [4] and the references therein. In this
paper, we only need the following explicit formula for the Q′-curvature: On a pseudo-
Einstein manifold (M, θ), the Q′-curvature is given by

Q′ =
1

2
∆bR− |A11|2 +

1

4
R2, (2.9)

where R is the Webster scalar curvature, |A11|2 = A11A
11 is the squared-norm of the

torsion, and ∆b is the nonnegative sub-Laplacian.
An infinitesimal CR automorphism of M is a real vector field that generates local CR

diffeomorphisms. In particular, it is a contact vector field with respect to the contact
structure given by the holomorphic tangent space H(M) := Re(T 1,0M + T 0,1M). Such
a vector field X has the form

X = if 1̄Z1̄ − if1Z1 − fT, (2.10)

where f = −θ(X). It is well-known that the condition that the flow of X preserves the
CR structure is equivalent to

f11 + ifA11 = 0. (2.11)
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See Lee [18]. Notice that the last equation is invariant with respect to the conformal
change of pseudohermitian structure.

3. Proofs of Theorems 1.1 and 1.2

Let X be an infinitesimal CR automorphism on M , given in terms of a local holomor-
phic frame Z1 as

X = if 1̄Z1̄ − if1Z1 − fT. (3.1)

For any function φ on M , integration-by-parts yields∫
M

X(φ) =

∫
M

if 1̄φ1̄ − if1φ1 − fφ0

= −
∫
M

if(φ1̄,
1̄ − φ1,

1)− fφ0

= −2

∫
M

fφ0

= 2

∫
M

f0φ, (3.2)

since φ1̄,
1̄ − φ1,

1 = −iφ0 [18, Eq. (2.14)]. We shall use (3.2) in what follows.

Lemma 3.1. If X is an infinitesimal CR automorphism, then∫
M

X(ImA11,
11) θ ∧ dθ = 0. (3.3)

Proof. In this proof, we shall use various identities in Lee [18]. First, using the identity

f01̄ = f1̄0 +A1̄1̄f
1̄, we compute

f01̄1̄ = (f1̄0 +A1̄1̄f
1̄),1̄

= f1̄01̄ +A1̄1̄,1̄f
1̄ +A1̄1̄f

1̄
,1̄.

For the first term on the right hand side, we write

f1̄01̄ = f1̄1̄0 +A1̄1̄f1̄,
1̄ −A1̄1̄,

1̄f1̄

we deduce that

f01̄1̄ = f1̄1̄0 − (∆bf)A1̄1̄ −A1̄1̄,
1̄f1̄ +A1̄1̄,1̄f

1̄

= (ifA1̄1̄),0 − (∆bf)A1̄1̄ −A1̄1̄,
1̄f1̄ +A1̄1̄,1̄f

1̄

= ifA1̄1̄,0 + if0A1̄1̄ − (∆bf)A1̄1̄ −A1̄1̄,
1̄f1̄ +A1̄1̄,1̄f

1̄. (3.4)

Here, we used f1̄1̄ = ifA1̄1̄ which is a consequence of the fact that X is an infinitesimal
CR automorphism. Multiplying both sides with A11 and taking imaginary parts of both
sides, we obtain

Im

∫
M
(A1̄1̄f01̄1̄) =

1

2

∫
M

f |A11|2,0 +
∫
M

f0|A11|2

− Im

∫
M
(f1̄A1̄1̄,

1̄A1̄1̄ − f 1̄A1̄1̄,1̄A
1̄1̄). (3.5)
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On the other hand, using the integration-by-part formula (Tanaka [19, section 3.3], Lee
[18, Eq. (2.18)]) and the identity f11̄ − f1̄1 = if0, we get

− Im

∫
M
(f1̄A1̄1̄,

1̄A1̄1̄ − f 1̄A1̄1̄,1̄A
1̄1̄)

= Im

∫
M

A1̄1̄A
1̄1̄,1̄f1̄ + |A11|2f1̄,1̄ +A1̄1̄A1̄1̄,1̄f

1̄

= Im

∫
M

|A11|2f1̄,1̄

=
i

2

∫
M

|A11|2
(
f1,

1 − f1̄,
1̄
)

= −1

2

∫
M

|A11|2f0. (3.6)

Substituting (3.6) into (3.5) and applying integration-by-parts, we deduce∫
M

X
(
ImA11,

11
)
= 2

∫
M

f0 Im
(
A11,

11
)

= 2 Im

∫
M

A11f0,
11

=

∫
M
(f |A11|2),0

= 0. (3.7)

We complete the proof of the lemma. □

Lemma 3.2. If X is a infinitesimal CR automorphism, then∫
M

X(∆bR) θ ∧ dθ = 0. (3.8)

Proof. From f11 + ifA11 = 0 as above, we have

f11A
11 = −if |A11|2

and thus, as f is of real-valued,

f11A
11 + f1̄1̄A

1̄1̄ = 2Re
(
f11A

11
)
= 0.

On the other hand, using the commutation relations f01 = f10 + A11f
1 and f101̄ =

f11̄0 + f11A
1
1̄ +A1

1̄,1f1 [18, equations (2.14) and (2.15)], we express f011̄ as follows

f011̄ =
(
f10 +A11f

1
)
,1̄

= f101̄ +A11,1̄f
1 +A11f

1
,1̄

= f11̄0 + f11A
1
1̄ +A1

1̄,1f1 +A11,1̄f
1 +A11f

1
,1̄

= f11̄0 + 2Re
(
f 1̄A1̄1̄,1

)
.
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Therefore,

Re

∫
Rf01,

1 = Re

∫
Rf1,

1
0 + 2Re

∫
Rf 1̄A1̄1̄,

1̄

= −Re

∫
R,0f1,

1 + 2Re

∫
Rf 1̄A1̄1̄,

1̄. (3.9)

Since R,0 = A11,
11 +A1̄1̄,

1̄1̄ [18, equation (2.13)], we have

Re

∫
M

R,0f1,
1 = Re

∫
M

A11,
11f1,

1 +Re

∫
M

A1̄1̄,
1̄1̄f1,

1. (3.10)

The first integral on the right-hand side of (3.10) can be transformed as follows:

Re

∫
M

A11,
11f1,

1 = −Re

∫
M

A11,
1f1,

11

= −Re

∫
M

A11,
1
(
f1̄,

1̄ + if0

)1

= −Re

∫
M

A11,
1f1̄,

1̄1 − Re

∫
M

iA11,
1f0,

1

= −Re

∫
M

A11,
1f1̄,

1̄1 +Re

∫
M

iA11f0,
11 (use (3.7))

= −Re

∫
M

A11,
1f1̄,

1̄1. (3.11)

Using [18, equation (2.15)], we compute

f1̄,11̄ = f1̄,1̄1 + if1̄,0 −Rf1̄

= (iA1̄1̄f),1 + if01̄ − iA1̄1̄f1 −Rf1̄

= iA1̄1̄,1f + if01̄ −Rf1̄.

Multiplying both sides with A11,1̄, integrating, and taking the real parts, we obtain

Re

∫
M

A11,
1f1̄,1

1 = Re

∫
M

iA11,
1f0,

1 − Re

∫
M

RA11,
1f1

= −Re

∫
M

iA11,
11f0 − Re

∫
M

Rf1A11,
1.

The first term on the right-hand side vanishes, by Lemma 3.1. Combine this with (3.11),
we have

Re

∫
M

A11,
11f1,

1 = −Re

∫
M

A11,
1f1̄,1

1 = Re

∫
M

Rf1A11,
1.

On the other hand, we compute

Re

∫
M

A1̄1̄,
1̄1̄f1,

1 = Re

∫
M

A1̄1̄,
1̄1̄
(
f1̄,

1̄ + if0

)
= Re

∫
M

A1̄1̄,
1̄1̄f1̄,

1̄ +Re

∫
M

iA1̄1̄,
1̄1̄f0
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The last term vanishes as proved above. Thus, together with (3.10), we deduce that∫
M

R,0f1,
1 = 2Re

∫
M

Rf1A11,
1.

From this, (3.9), and (3.2), we obtain∫
M

X(∆bR) = 2

∫
(∆bR)f0 = 4Re

∫
Rf01,

1 = 0, (3.12)

which completes the proof of Lemma 3.2. □

Proof of Theorem 1.1. Since the Q-curvature is given by a linear combination of ∆bR
and Im

(
A11,

11
)
, Theorem 1.1 follows directly from Lemmas 3.1 and 3.2. □

Now, we move onto proof of Theorem 1.2. We need the following theorem which also
gives another pseudohermitian invariant satisfying a Kazdan–Warner identity.

Lemma 3.3. Put Φ = 1
4R

2 − |A|2. Suppose that θ is pseudo-Einstein and M is locally
CR spherical. Then ∫

M
X(Φ) θ ∧ dθ = 0.

Proof. If θ is pseudo-Einstein, then (2.8) holds, that is R,1 = iA11,
1. Differentiating this

identity, we find that

R,11 = iA11,
1
1. (3.13)

Substituting this into the formula for the Cartan tensor Q11, which vanishes identically
since M is assumed to be locally CR spherical, we find that

0 = Q11 = −1

2
R,11 +

i

2
RA11 −A11,0.

Hence,

A11,0 =
i

2

(
RA11 −A11,

1
1

)
. (3.14)

On the other hand, applying integration-by-parts twice yields∫
M

(
1

4
R2

)
,0

f = Re

∫
M

fRA1̄1̄,
1̄1̄

= Re

∫
M

A1̄1̄(fR)1̄1̄

= Re

∫
M

A1̄1̄

(
f 1̄1̄R+ 2f 1̄R1̄ + fR1̄1̄

)
. (3.15)

Therefore, substituting the pseudo-Einstein condition (2.8), its consequence (3.13), and
the equation of CR infinitesimal automorphisms (2.11) into (3.15), we obtain∫

M

(
1

4
R2

)
,0

f = 2Re

∫
M

iA1̄
1,
1A1̄1̄f

1̄ +Re

∫
M

iA1̄1̄
,
1
1A1̄1̄f

= Re

∫
M

iA1̄
1,
1A1̄1̄f

1̄. (3.16)
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Furthermore, from (3.14), we use integration-by-part to get (as R and f are real-valued)∫
M

|A11|2,0f = 2Re

∫
M

A11A11,0f

= Re

∫
M

iA11f
(
RA11 −A11,

1
1

)
= −Re

∫
M

ifA11A11,
1
1

= Re

∫
M

if1A
11A11,

1. (3.17)

Putting (3.16) and (3.17) together, we find that∫
M

(
1

4
R2 − |A11|2

)
,0

f = 0. (3.18)

This complete the proof of the lemma, in view of (3.2). □

Proof of Theorem 1.2. Since the Q′-curvature is a linear combination of ∆bR and Φ,
Theorem 1.2 follows directly from Lemmas 3.2 and 3.3. □

As in Kazdan–Warner [17], our identities give obstructions for the existence of pseudo-
Hermitian structure having prescribed Q-curvature or Q′-curvature. In the example
below, we give detailed computations on the sphere giving explicit functions that can
not be Q′-curvature of a pseudo-Einstein structure.

Example 1. Consider the sphere S3 ⊂ C2 defined by the equation

ρ(z1, z2) := |z1|2 + |z2|2 − 1 = 0. (3.19)

We equip S3 with its “standard” pseudo-Hermitian structure θ = ι∗(∂̄ρ), where ι is the
inclusion. We put

ξ = z1
∂

∂z1
+ z2

∂

∂z2
(3.20)

and observe, by direct calculations, that T := i(ξ − ξ) is the Reeb vector field (when
being restricted to S3). Moreover, we put

Z1̄ = z2
∂

∂z1
− z1

∂

∂z2
(3.21)

and see that Z1̄ forms a frame for T (0,1)S3. In this frame, the Levi “matrix” is h11̄ = 1.
Further calculations yield

ω1
1 = −2iθ. (3.22)

From this, we can compute various pseudo-Hermitian invariants. In particular, we obtain

R = 2, A11 = 0, (3.23)

and therefore,

Q = 0, Q′ = 1. (3.24)
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Take f = Re(z1) and g = − Im(z1), which are eigenfunctions corresponding to the
first positive eigenvalue λ1 = 1 of ∆b on (S3, θ), as can be easily checked. By direct
calculations using (3.20), (3.21), and (3.22), we find that

f1 =
1

2
z̄2, f1,1 = 0, T (f) = g, g1 =

i

2
z̄2, and T (g) = −f. (3.25)

Put uϵ = 1 + ϵg (ϵ ∈ R) and consider the vector field

X = X(f) = if 1̄Z1̄ − if1Z1 − fT,

which is an infinitesimal CR automorphism since f11 = 0 and A11 = 0. Using (3.25), we
find that

X(uϵ) = ϵX(g) = ϵ(if 1̄g1̄ − if1g1 − fT (g))

= ϵ
(
2Re

(
if 1̄g1̄

)
+ f2

)
= ϵ

(
1

2
|z2|2 + (Re(z1))

2

)
.

Thus, if ϵ > 0, then X(uϵ) > 0 almost everywhere and consequently∫
M

X(u) θ̂ ∧ dθ̂ > 0

for all pseudo-Hermitian structure θ̂. From this, it follows that uϵ is the Q′-curvature of
some pseudo-Einstein structure on S3 if and only if ϵ = 0.

For the Q-curvature, we observe that by a similar argument the function vϵ := ϵg can
not be the Q-curvature of any pseudo-Hermitian structure on S3 unless ϵ = 0.
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[7] J. H. Chêng and J. M. Lee. The Burns-Epstein invariant and deformation of CR structures. Duke
Math. J., 60(1):221–254, 1990.
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