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THE HOLOMORPHIC SECTIONAL CURVATURE
AND “CONVEX” REAL HYPERSURFACES

IN KÄHLER MANIFOLDS

BY

DUONG NGOC SON (Wien)

Abstract. We prove a sharp lower bound for the Tanaka–Webster holomorphic sec-
tional curvature of strictly pseudoconvex real hypersurfaces that are “semi-isometrically”
immersed in a Kähler manifold of nonnegative holomorphic sectional curvature under
an appropriate convexity condition. This gives a partial answer to a question posed by
Chanillo, Chiu, and Yang regarding the positivity of the Tanaka–Webster scalar curva-
ture of the boundary of a strictly convex domain in C2 from 2012. In fact, the main result
proves a stronger positivity property, namely the 1

2
-positivity in the sense of Cao, Chang,

and Chen, for compact “convex” real hypersurfaces in a Kähler manifold of nonnegative
holomorphic sectional curvature. Our approach is rather simple and uses a version of
the Gauss equation for semi-isometric CR immersions of pseudohermitian manifolds into
Kähler manifolds.

1. Introduction. Let (M, θ) be a pseudohermitian manifold and let
Rαβ̄γσ̄ be the Tanaka–Webster curvature tensor of θ [16, 18]. The holo-
morphic sectional curvature K(Z), the Ricci tensor Rαβ̄ , and the scalar
curvature R can be defined as usual. For example, Webster [18] defined
the holomorphic sectional curvature of (M, θ) for each nonzero (1, 0)-vector
Z = ζαZα by

(1.1) K(Z) := 1
2Rαβ̄γσ̄ζ

αζ β̄ζγζ σ̄/|Z|4.
These curvature quantities essentially coincide when M is 3-dimensional;
they are fundamental in the study of pseudohermitian geometry and CR
geometry of Levi-nondegenerate real hypersurfaces (or more generally, Levi-
nondegerate CR manifolds of hypersurface type) and have been investigated
extensively in the literature. For example, in the 1970s Tanaka [16] proved
that for compact manifolds of dimension greater than 3 if the Tanaka–
Webster Ricci tensor is positive then the first Kohn–Rossi group H0,1(M) is
trivial (Tanaka’s statement is actually more general; see [16, Proposition 5.3]
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for details). In the 2010s, Chanillo, Chiu, and Yang [3] proved that for a com-
pact 3-dimensional strictly pseudoconvex CR manifold, the positivity of the
scalar curvature and the nonnegativity of the CR Paneitz operator imply em-
beddability into a complex space. This result partially motivated further re-
search on the positivity of the scalar curvature and the CR Paneitz operator.
Chanillo, Chiu, and Yang [4] proved, among other interesting results, that
the scalar curvature R is positive on a real ellipsoid of C2 [4, Theorem 1.2].
In general dimension, a positive lower bound for the Tanaka–Webster Ricci
tensor on a real ellipsoid can be deduced from Li–Tran [9] which studies a
lower estimate for the eigenvalue of the sub-Laplacian [9, Theorem 1.1]. In
[4, p. 81], Chanillo, Chiu, and Yang posed an interesting question whether
the scalar curvature R must be positive on strictly convex domains in C2.

In this paper, we give a partial affirmative answer to this question for
a special class of real hypersurfaces in C2. More precisely, for the “pluri-
harmonic perturbations” of the sphere, the C-convexity (a weaker notion
of the usual convexity; see, e.g., [1]) does imply a positive lower bound for
the holomorphic sectional curvature K(Z). This is a special case of a more
general result for pseudohermitian manifolds that are “convex” (in an appro-
priate sense) “semi-isometrically” immersed (in the sense of [14]) in a Kähler
manifold having nonnegative holomorphic sectional curvature. Here, the new
notion of convexity is defined as follows. First, recall that a pseudohermi-
tian manifold (M, θ) ⊂ (X , ω) is said to be semi-isometrically immersed in
a Kähler manifold (X , ω) if dθ = ι∗ω, where ι is the inclusion. The second
fundamental form II for ι is defined using the Chern connection ∇̃ on X and
the Tanaka–Webster connection ∇ on M via the Gauss formula, that is,

II(X,Y ) := ∇̃XY −∇XY(1.2)

for vector fields X,Y ∈ CT (M), extended smoothly to vector fields in
CT (X ). If Zα is a local unitary frame for T (1,0)(M), then the (1, 0)-mean
curvature is defined [14] by

H :=

n∑
α=1

II(Zᾱ, Zα).(1.3)

Then H is a section of the normal bundle N (1,0)(M), the orthogonal com-
plement of T (1,0)(M) in T (1,0)(X ) [14]. The real mean curvature vector is
defined by

µ = 1
2(H +H).(1.4)

If M is a real hypersurface in X , then the (1, 0)-normal bundle N (1,0)(M)
has 1-dimensional fibers and the restriction II|H(M), H(M) := <T (1,0)(M),
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is determined by a scalar-valued form

h(X,Y ) = 〈II(X,Y ), µ〉/|µ|, X, Y ∈ H(M).(1.5)

We can state the definition of the C-convexity that is relevant for our pur-
poses as follows.

Definition 1.1. Let (M, θ) ⊂ (X , ω) be a strictly pseudoconvex semi-
isometrically immersed real hypersurface in a Kähler manifold. We say that
(M, θ) is pseudohermitian C-convex if the scalar second fundamental form
h is positive semi-definite in the complex tangent space H(M).

Clearly, this definition is analogous to the well-known notion of C-con-
vexity for subsets of Cn+1 or CPn+1 in the complex analysis literature; see [1]
and Section 2.3.

In analogy with the notion of holomorphic sectional curvature (1.1),
we define the holomorphic sectional torsion A(Z) for each nonzero vector
Z = ζαZα in T (1,0)(M) by

A(Z) := iAαβζ
αζβ/|Z|2,(1.6)

where Aαβ is the pseudohermitian torsion; see Section 2 for details. It
should be mentioned that twice the real part of |Z|2A(Z), often denoted
by Tor(Z,Z), i.e.

Tor(Z,Z) := iAαβζ
αζβ − iAᾱβ̄ζᾱζ β̄,

plays an important role in several problems in the pseudohermitian geome-
try. We mention here, for example, the Lichnerowicz-type estimate for the
first positive eigenvalue of the sub-Laplacian (see e.g. [9] and the references
therein) and the classification of the closed CR torsion solitons [2].

We have the following theorem.

Theorem 1.2. Let (M, θ) be a pseudohermitian real hypersurface of a
Kähler manifold (X , ω) with dθ = ι∗ω. Then (M, θ) is pseudohermitian C-
convex if and only if

|A(Z)| ≤ |H|2(1.7)

for all Z ∈ T (1,0)(M), Z 6= 0. In this case the Tanaka–Webster holomorphic
sectional curvature K of (M, θ) and the holomorphic sectional curvature K̃
of (X , ω) satisfy

(1.8) K(Z) ≥ K̃(Z) + |H|2

2
.

Moreover, the inequalities are sharp.

The difference between the coefficients of K and K̃ in (1.8) is artificial
and due to the factor 1

2 in (1.1), which was chosen by Webster [18] so that
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the hypersphere |z|2 = 1 with the “standard” pseudohermitian structure
θ := i∂̄|z|2 has constant curvature +1.

The arguably simplest case in which Theorem 1.2 applies is when X
is a Kähler surface of nonnegative holomorphic sectional curvature. In this
case, (M, θ) is three-dimensional and its pseudohermitian C-convexity im-
plies the positivity of the Tanaka–Webster scalar curvature. In analogy with
the positive scalar curvature problem in Riemannian geometry, we can ask:
what CR manifolds can be endowed with a positive Tanaka–Webster scalar
curvature pseudohermitian structure? In a certain sense the existence of
such a structure is weaker than its Riemannian analogue. In fact, there are
CR manifolds diffeomorphic to the 3-torus T3 which admit pseudohermitian
structures of positive Tanaka–Webster scalar curvature (see Remark 3.4),
while tori of dimension at least 3 admit no positive scalar curvature Rieman-
nian metric [13]. Recently, Cao, Chang, and Chen [2] considered a condition
stronger than the positivity of the Tanaka–Webster scalar curvature, the
C0-positivity, which involves both curvature and torsion. For compact CR
3-manifolds they proved that the C0-positivity with C0 ≥ 1/2 implies the
positivity of an adapted Riemannian metric. Moreover, the threshold 1/2 is
sharp (see Remark 3.4).

Combining this result and Theorem 1.2, we obtain the following

Corollary 1.3. Let (M3, θ) be a compact 3-dimensional strictly pseudo-
hermitian C-convex real hypersurface in a Kähler surface (X , ω) with nonneg-
ative holomorphic sectional curvature. Then M admits a Riemannian metric
of positive curvature.

We point out that both the convexity of (M3, θ) and the nonnegativ-
ity of the sectional curvature of the ambient space are necessary for Corol-
lary 1.3. Indeed, consider the CR link Σ(p, q, r) of a Brieskorn–Pham singu-
larity V (p, q, r) := {zp1 + zq2 + zr3 = 0} ⊂ C3. Generally, V (p, q, r) with the
induced metric from a suitable flat metric on C3 has nonpositive holomor-
phic sectional curvature. For an appropriate choice of contact form θ, the
link Σ(p, q, r) is a pseudohermitian C-convex (in fact, of vanishing pseudo-
hermitian torsion) real hypersurface in V (p, q, r). On the other hand, it is
well-known that many of these CR links admit no positive scalar curvature
metrics [6, 10]; see also [11]. Thus, we obtain a wealth of examples which
show that the nonnegativity of K̃ in Corollary 1.3 is necessary. See Section 4
for details.

In the rest of this introduction, we describe a concrete and familiar situa-
tion in which the pseudohermitian C-convexity in the sense of Definition 1.1
coincides with the well-known and more intuitive notion of C-convexity in
complex analysis as defined in [1]. The latter, in turn, is weaker than the
“usual” convexity for subsets of the complex euclidean space. We thus obtain
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a family of manifolds for which the pseudohermitian C-convexity is evident.
More precisely, let M ⊂ Cn+1 be a real hypersurface defined by % = 0 with
d% 6= 0. Recall that if the restriction of the Hessian of % onto the complex
tangent space H(M) is positive semi-definite, then M is C-convex [1].

In what follows, we shall assume the following condition holds along M :

∂2%

∂zj∂z̄k
= ajk̄ + o(%),(1.9)

where ajk̄ is a positive definite Hermitian matrix with constant entries. Then
M is strictly pseudoconvex. Let θ = ι∗(i∂̄%) be a pseudohermitian structure
onM and ω = iajk̄dz

j∧dz̄k the Kähler form of a flat Kähler metric on Cn+1.
Clearly,

dθ = ι∗ω.

Thus, ι is semi-isometric. In Proposition 2.5, we prove that under condi-
tion (1.9) M is pseudohermitian C-convex if and only if M is C-convex in
the sense of [1]. Moreover, let

|∂%|2 :=
n+1∑
j,k=1

ajk̄%j%k̄(1.10)

be the squared-length of ∂% in the (dual) metric ω. Then |H|2 = 1/|∂%|2. In
fact, |H|2 coincides with theGraham–Lee transverse curvature of the defining
function; see [14]. As a consequence of Theorem 1.2 and Proposition 2.5, we
have the following

Corollary 1.4. Let (M, θ) be given as above and assume that (1.9)
holds. If M is C-convex then (M, θ) has 1

2 -positive holomorphic sectional
curvature. More precisely, for any (1, 0)-vector Z ∈ T (1,0)(M), Z 6= 0,

K(Z) ≥ 1
2 |∂%|

−2 ≥ 1
2 |A(Z)|.(1.11)

The inequalities are sharp.

Corollary 1.4 generalizes [4, Theorem 1.2] and [9] about the positivity
of the Tanaka–Webster scalar curvature on real ellipsoids. Recall that an
ellipsoid E in C2 ∼= R4 is a compact real hypersurface given by the equation

ax2 + by2 + cu2 + dv2 = 1.

In complex coordinates z = x+ iy, w = u+ iv, we have

E = {(z, w) ∈ C2 : % = α|z|2 + β|w|2 + <(γz2 + σw2)− 1 = 0},

where α = (a+b)/2, β = (c+d)/2, γ = (a−b)/2, and σ = (c−d)/2. Put θ =
ι∗(i∂̄%), where ι : E → C2 is the inclusion. Then (E, θ) is semi-isometrically
immersed in C2 with the metric αdz⊗dz̄+βdw⊗dw̄. As E is strictly convex,
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it is strictly C-convex in the sense of [1] (hence pseudohermitian C-convex
in the sense of Definition 1.1 by Proposition 2.5). Thus

R = 2K ≥ 1

|∂%|2
=

αβ

β|%z|2 + α|%w|2
.(1.12)

In particular, R > 0, which was proved before in [9] and [4].
Evidently, a real ellipsoid in general dimension is strictly convex and the

same argument as above also shows that its holomorphic sectional curvature
is bounded below by 1

2 |∂%|
−2 > 0.

A motivation for studying lower estimates of the scalar curvature is to
bound the first positive eigenvalue λ1(�b) of the Kohn Laplacian �b :=
∂̄∗b ∂̄b + ∂̄b∂̄

∗
b from below. Such a lower bound was first obtained in [3] under

the nonnegativity of the CR Paneitz operator (see [3] and [15] for more
details on the CR Paneitz operator and [8] for higher-dimensional version of
this estimate). Combining Corollary 1.4, Chanillo, Chiu, and Yang’s lower
bound [3], and the recent result of Takeuchi [15], we obtain

Corollary 1.5. LetM be a compact strictly pseudoconvex pseudohermi-
tian real hypersurface C2 defined by % = 0 and let θ = i∂̄%. Assume that (1.9)
holds. IfM is C-convex, then the first positive eigenvalue λ1(�b) of the Kohn
Laplacian acting on functions satisfies

λ1(�b) ≥
1

2
min
M

(
1

|∂%|2

)
.(1.13)

Remark 1.6. When %jk̄ = δjk, the Kronecker symbol, it was proved by
Li, Lin, and the author [7] that

λ1(�b) ≤ averageM

(
1

|∂%|2

)
(1.14)

where the averaging is taken with respect to the volume form θ∧dθ. In (1.13),
due to the factor 1/2 on the right-hand side, the estimate is not expected to
be sharp. In view of (1.14), it is interesting whether one can improve (1.13)
with the constant 1 on the right-hand side.

2. Background and basic results

2.1. Pseudohermitian structures on real hypersurfaces. In this
section, we introduce several basic notions and results of pseudohermitian
geometry of nondegenerate real hypersurfaces in a complex manifold. For
further details, we refer the readers to [16] and [18].

Let M ⊂ X be a strictly pseudoconvex real hypersurface in a complex
manifold. The CR structure on M is induced from the complex structure
on X , namely,

T (1,0)(M) := T (1,0)(X ) ∩ CT (M).
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The real hyperplane H(M) := <(T (1,0)(M)) ⊂ T (M) is the kernel of a
nonvanishing real 1-form θ. By strict pseudoconvexity, dθ is positive or neg-
ative definite when restricted to H(M). For simplicity, we assume that dθ is
positive definite on H(M). The triple (M,T (1,0)(M), θ) is called a pseudo-
hermitian manifold [18].

Fix a pseudohermitian structure θ. There exists a unique real vector
field T transverse to H, the Reeb vector field, such that

T cdθ = 0, θ(T ) = 1.

Let Zα, α = 1, . . . , n, be a local frame for T (1,0)(M) and let Zᾱ = Zα be
the conjugates. Then {Zα, Zᾱ, T} is a local frame for CT (M). Its dual frame
{θα, θᾱ, θ} is called an admissible coframe if

dθ = ihαβ̄θ
α ∧ θβ̄,

where hαβ̄ is a positive definite Hermitian matrix. We use hαβ̄ and its inverse
transpose hαβ̄ to lower and raise the Greek indices.

On a pseudohermitian manifold, there is a canonical linear connection—
the Tanaka–Webster connection [16, 18]—which can be defined by

∇Zα = ωα
βZβ, ∇Zᾱ = ωᾱ

β̄Zβ̄, ∇T = 0,

where the connection forms ωαβ satisfy the following structural equations:

dθβ = θα ∧ ωαβ +Aβᾱθ ∧ θᾱ,
dhαβ̄ = ωα

γhγβ̄ + hαγ̄ωβ̄
γ̄ .

The tensor Aαβ is the pseudohermitian torsion, which is shown to be sym-
metric: Aαβ = Aβα [18]. The curvature form Ωβ

α := dωα
β −ωαγ ∧ωγβ of the

Tanaka–Webster connection satisfies

Ωα
β = Rβαγσ̄θ

γ ∧ θσ̄ −∇βAαγθ ∧ θγ +∇αAβγ̄θ ∧ θγ̄

− iAαγθγ ∧ θβ + ihαγ̄A
β
%̄θ
γ̄ ∧ θ%̄.

The tensor Rαβγσ̄ is called the Tanaka–Webster curvature. It has the follow-
ing symmetries:

Rαβ̄γσ̄ = Rγβ̄ασ̄ = Rασ̄γβ̄.

As usual, contraction of indices gives the Ricci tensor Rαβ̄ = hγσ̄Rαβ̄γσ̄ and
the scalar curvature R = hαβ̄Rαβ̄ . The Tanaka–Webster holomorphic sec-
tional curvature is defined similarly to the Hermitian or Kähler case by (1.1).
For CR 3-manifolds, these three curvature quantities are essentially the same.

The fundamental Chern–Moser invariant of Levi-nondegenerate CR man-
ifolds can be “represented” by the completely tracefree part of the Tanaka–
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Webster curvature, the Chern–Moser–Weyl tensor Sβαγσ̄ [18]. Precisely,

Sβ
α
γσ̄ = Rβ

α
γσ̄ −

Rβ
αhγσ̄ +Rγ

αhβσ̄ + δαβRγσ̄ + δαγRβσ̄

n+ 2

+
R(δαβhγσ̄ + δαγ hβσ̄)

(n+ 1)(n+ 2)
,

where dimM = 2n+ 1 ≥ 5.
Let f be a smooth function on a compact pseudohermitian manifold M .

We can write
df = fαθ

α + fβ̄θ
β̄ + f0θ.

The Kohn Laplacian �b : C∞(M,C) → C∞(M,C) acting on functions,
�bf = ∂̄∗b ∂̄bf , can be expressed locally by

�bf = −fᾱᾱ,
where an index preceded by a comma indicates a Tanaka–Webster covariant
derivative. For compact embeddable strictly pseudoconvex CR manifolds,
the spectral theory of �b is well-understood. Combining Chanillo, Chiu, and
Yang [3] and Takeuchi [15], we find that the first positive eigenvalue λ1(�b)
on embeddable CR 3-manifold satisfies

(2.1) λ1(�b) ≥ 1
2 min

M
R.

This is meaningful when (M, θ) has positive Tanaka–Webster scalar curva-
ture. For the case n := dimCRM ≥ 2, if the Tanaka–Webster Ricci curvature
is bounded below by κ > 0, then

(2.2) λ1(�b) ≥
n

n+ 1
κ;

see [8].

2.2. Semi-isometric CR immersions and the Gauss equations.
Let M ⊂ Cn+1 be a strictly pseudoconvex CR manifold and let % be a
defining function for M , i.e., M = {% = 0} and d% 6= 0 along M . If in
addition % is strictly plurisubharmonic, then it induces a Kähler metric ω =
i∂∂̄% on a neighborhood U ofM . The pseudohermitian structure θ := ι∗(i∂̄%)
and the Kähler form ω satisfy dθ = ι∗ω and thus ι : M → U is a semi-
isometric immersion in the terminology of [14].

Definition 2.1 ([14]). Let (M, θ) be a strictly pseudoconvex pseudoher-
mitian manifold, (X , ω) a Kähler manifold, and F : M → (X , ω) a smooth
CR mapping. We say that F is semi-isometric if

(2.3) dθ = F ∗ω.

If M ⊂ X and if the inclusion ι : (M, θ) → (X , ω) is semi-isometric,
then we say that (M, θ) is a pseudohermitian submanifold of (X , ω). In this



HOLOMORPHIC SECTIONAL CURVATURE 157

situation, the pseudohermitian geometry of (M, θ) and the Kähler geometry
of the ambient manifold (X , ω) are related via the Gauss equations [14]. We
describe this in more detail as follows. Let ∇ and ∇̃ be the Tanaka–Webster
connection of (M, θ) and the Chern connection of (X , ω), respectively. Then
the second fundamental form of M is defined by the Gauss formula (cf. [14])

II(Z,W ) := ∇̃
Z̃
W̃ −∇ZW.

Here Z̃ and W̃ are smooth extensions of Z and W to a neighborhood of a
point of M in X . Taking the trace of II on horizontal directions, we obtain
the (1, 0)-mean curvature vector field

(2.4) H :=
1

n

n∑
α=1

II(Zᾱ, Zα).

Basic properties of II and H were given in [14]. For example, II is non-
symmetric, but for Z,W ∈ T (1,0)(M),

II(Z,W ) = II(W,Z),(2.5)

while for Z ∈ T (1,0)(M) and W ∈ T (0,1)(M),

II(Z,W )− II(W,Z) = −i〈Z,W 〉T,(2.6)

where T is the Reeb vector field. Moreover,

II(Z,W ) = 〈Z,W 〉H.(2.7)

We say that ι is totally umbilical if II(Z,W ) = 0 for all (1, 0)-vectors Z
and W .

We shall use the following conventions for the curvature operator and the
torsion of ∇:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

T∇(X,Y ) = ∇XY −∇YX − [X,Y ].

Denote by τ the pseudohermitian torsion, i.e.,

(2.8) τX := T∇(T,X).

The Levi metric on M and the Kähler metric on X will be denoted by 〈·, ·〉.
The curvature of the Chern connection of ω will be denoted by R̃. The Gauss
equations are as follows:

Proposition 2.2 (Gauss equations [14]). Let ι : (M, θ) ↪→ (X , ω) be
a pseudohermitian submanifold of a Kähler manifold. Let R and R̃ be the
curvature operators of the Tanaka–Webster and Chern connections on M
and X , respectively. Then
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(1) for X,Z ∈ Γ (T (1,0)(M)) and Y ,W ∈ Γ (T 0,1(M)), the following Gauss
equation holds:

〈R̃(X,Y )Z,W 〉 = 〈R(X,Y )Z,W 〉+ 〈II(X,Z), II(Y ,W )〉(2.9)

− |H|2(〈Y , Z〉〈X,W 〉+ 〈X,Y 〉〈Z,W 〉),

(2) for X,Z ∈ Γ (T (1,0)(M)),

(2.10) 〈τX,Z〉 = −i〈II(X,Z), H〉.
The Gauss equation (2.9) is similar to several versions in the literature

(cf. [5]) and has found several applications [14, 12]. For example, Reiter
and the author [12] used this equation to establish an explicit and concise
formula for the well-known Chern–Moser–Weyl tensor. On the other hand,
equation (2.10), which has no Riemannian counterpart, relates the (intrinsic)
torsion of the submanifold and the (extrinsic) second fundamental form of
the immersion. This equation will also be of importance for us.

As a consequence of the Gauss equations we have the following

Proposition 2.3. Let ι : (M, θ) ↪→ (X , ω) be a real hypersurface of a
Kähler manifold with dθ = ι∗ω and let H be the (1, 0)-mean curvature vector
of M . Let K and K̃ be the holomorphic sectional curvatures of θ and ω,
respectively, and let A be the holomorphic sectional torsion of θ. Then

K(Z) + 1
2 |A(Z)|2/|H|2 = 1

2K̃(Z) + |H|2 ∀Z ∈ T (1,0)(M).(2.11)

Moreover, (M, θ) has vanishing pseudohermitian torsion if and only if
ι : M → X is totally umbilical.

Proof. Let Z ∈ T (1,0)(M) with |Z| = 1. From the Gauss equation (2.9)
we get

1
2K̃(Z) = K(Z) + 1

2 |II(Z,Z)|2 − |H|2.(2.12)

On the other hand, from (2.10) and (1.5), we also have

iAαβζ
αζβ = i〈τZ, Z〉 = 〈II(Z,Z), H〉 =

√
2h(Z,Z)|H|.

But II(Z,Z) belongs to N (1,0)(M) which has 1-dimensional fibers, we have

II(Z,Z) =
√

2h(Z,Z)H/|H|,
and therefore, since |Z| = 1, we have

|II(Z,Z)|2 = 2 |h(Z,Z)|2 = |A(Z)|2
/
|H|2.

Plugging this into (2.12) we obtain (2.11). Moreover, θ has vanishing torsion
iff A(Z) = 0 iff II(Z,Z) = 0 for all Z ∈ T (1,0)(M). But this is also equivalent
to II(Z,W ) = 0 for all Z,W ∈ T (1,0)(M) since II is symmetric and bilin-
ear when restricted to T (1,0)(M), i.e., M is totally umbilical. The proof is
complete.
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2.3. Pseudohermitian C-convexity. A domain Ω ⊂ CPn+1 is C-
convex if any nonempty intersection of Ω with a complex line is connected
and simply connected. This notion of convexity plays an important role in
several problems in complex analysis related to the geometry of (weakly or
strongly) pseudoconvex domains in complex euclidean or projective spaces;
see [1] for some motivations and more details. For bounded domains with
C2-smooth boundaries in Cn ⊂ CPn, there is also a differential condition
for the C-convexity which involves the Hessian of a defining function. This
condition is described as follows. If % is a real-valued C2-smooth function,
then the Hessian of % is the following quadratic form:

(2.13) Hess%(a; η) :=
∑
j,k

<(%jk(a)ηjηk) +
∑
j,k

%jk̄(a)ηjηk̄, η ∈ Cn.

The boundary characterization of the C-convexity is as follows.

Proposition 2.4 (see [1, Theorem 2.5.18]). Suppose Ω is a C2-smoothly
bounded domain with a real-valued C2-smooth defining function %, i.e., Ω =
{% < 0} with d% 6= 0 on the boundary of Ω. Then the following are equivalent:
(1) The domain Ω is C-convex.
(2) The restriction of the Hessian of % at any boundary point p ∈ ∂Ω to the

complex tangent plane through p is positive semi-definite.

The condition that Hess% is positive (semi-)definite on the complex tan-
gent plane is often called the “Behnke–Peschl” condition; it implies the weak
pseudoconvexity of the domain. Clearly, the C-convexity is not invariant
under general biholomorphic mappings of Cn or CPn. Thus it cannot be
generalized to real hypersurfaces in an arbitrary complex manifold without
additional structures (e.g. a Kähler metric). For subsets of complex pro-
jective space, this convexity gives a rather strict constraint. For example,
a C-convex domain in CN must be diffeomorphic to the ball [1].

The notion of pseudohermitian C-convexity in Definition 1.1 is analogous
to the notion of C-convexity in Proposition 2.4, but the former depends
essentially on the pseudohermitian structure on M and the Kähler metric
on the ambient space. We prove below that for a class of pseudohermitian
real hypersurfaces in Cn+1 these two notions of convexity coincide.

Proposition 2.5. Let M ⊂ Cn+1 be a strictly pseudoconvex real hyper-
surface defined by % = 0 with d% 6= 0. Suppose that %jk̄ = ajk̄+o(%) along M ,
where [ajk̄] is a hermitian matrix of constants. Let θ = ι∗(i∂̄%). Then (M, θ)

is a semi-isometric real hypersurface in Cn+1 equipped with the hermitian
metric ajk̄dz

j ⊗ dzk̄. Moreover, the following are equivalent:
(1) M is C-convex.
(2) (M, θ) is pseudohermitian C-convex in (Cn+1, ajk̄dz

j⊗dzk̄) in the sense
of Definition 1.1.
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Proof. The last assertion follows from explicit formulas for the second
fundamental form in [14] and [12]. Notice that the Levi matrix hαβ̄ in the
frame Zα := %w∂α − %α∂w is given by

hαβ̄ := −idθ(Zα, Zβ̄) = %ZZ̄(Zα, Zβ̄),

where %ZZ̄ is the Hermitian part of the Hessian of %. Following [12], we define
the second order differential operator

D%
αβ := %2

w∂α∂β − %w%α∂w∂β − %w%β∂w∂α + %α%β∂
2
w,

which satisfies
D%
αβ(ϕ) = ϕZZ(Zα, Zβ).

From [12, Prop. 2.2], we have

II(Zα, Zβ) = −(%k̄D%
αβ(%k̄)− hαβ)H.

On the other hand, from [14] we have

II(Zα, Zβ̄) = −%ZZ(Zα, Zβ̄)H.

Thus, for Z = ζαZα ∈ T (1,0)
p (M), from (1.5) we have

h(Z + Z,Z + Z)|p
=
√

2 |H|
(
<(−%k̄Dαβ(%k̄)ζ

αζβ + hαβζ
αζβ) + hαβ̄ζ

αζ β̄
)∣∣
p
.

If %jk̄’s are constants, then Dαβ(%k̄) = 0, and thus the scalar-valued second
fundamental form h restricted to H(M) reduces essentially to the restriction
of the usual Hessian of %. Precisely,

h(Z + Z,Z + Z)|p =
√

2 |H|(hαβ̄ζαζ β̄ + <(hαβζ
αζβ))|p

=
√

2 |H|Hess%(p;Z).

Hence, when %jk̄’s are constants, the pseudohermitian C-convexity condition
in Definition 1.1 is exactly the condition for domains in Cn+1 in Proposi-
tion 2.4. The proof is complete.

Proposition 2.6. Let (M, θ) be a semi-isometrically immersed real hy-
persurface in (X , ω) with (1, 0)-mean curvature vector H. Then (M, θ) is
pseudohermitian C-convex if and only if

|A(Z)| ≤ |H|2 ∀Z ∈ T (1,0)(M), Z 6= 0.(2.14)

Moreover, (M, θ) is stricly pseudohermitian C-convex iff strict inequality
holds in (2.14).

Thus, if (M, θ) has vanishing pseudohermitian torsion, then for any (real
codimension 1) semi-isometric CR immersion ι : (M, θ)→ (X , ω) the image
ι(M) must be pseudohermitian C-convex in (X , ω).
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Proof of Proposition 2.6. Assume that M is pseudohermitian C-convex.
By the Gauss equation, for Z ∈ T (1,0)(M) with |Z| = 1 we have

A(Z) = i〈τZ, Z〉 = 〈II(Z,Z), H〉.
By the pseudohermitian C-convexity, the real-valued form h defined in (1.5)
is positive semi-definite on H(M). Applying this positivity to the vector
iZ − iZ, we have

h(iZ − iZ, iZ − iZ) ≥ 0

which is equivalent to

< 〈II(Z,Z), H〉 − < 〈II(Z,Z), H〉 ≥ 0.

Thus,
<A(Z) = < 〈II(Z,Z), H〉 ≤ < 〈II(Z,Z), H〉 = |H|2.

Furthermore, by the difference in homogeneity, this is equivalent to

|A(Z)| ≤ |H|2 ∀Z ∈ T (1,0)(M),

as desired. The proof of the converse uses similar calculation. We leave the
details to the readers.

Example 2.7 ([1, Example 2.5.14]). Consider for t ∈ [0, 1] the Hartogs
domain

Et = {(z, w) ∈ C2 : −1 + |z|2 + |w|2 + t(<z2)2 < 0}.
Evidently, Et is bounded. It has been shown in [1] that Et has smooth
boundary and is convex for 0 < t < 3/4 and nonconvex for 3/4 ≤ t ≤ 1.
However, it is C-convex for t ∈ [0, 1] and thus the C-convexity is a weaker
condition than the “usual” convexity.

For any t, the Tanaka–Webster scalar curvature R of θ := i∂̄% at a
point (0, eiτ ) is 2(1 − t). If t = 1 then R = 0 on the circle (0, eiτ ). Thus,
the C-convexity alone is not enough for R to be bounded below by the
Graham–Lee transverse curvature. We point out that each Et can be semi-
isometrically embedded as a real codimension 3 CR submanifold of C3 with
the flat metric by the embedding (z, w) 7→ (z, w,

√
t/2 z2). But the notion

of pseudohermitian C-convexity is not well-defined for higher-codimensional
immersions.

3. Proofs of Theorem 1.2 and its corollaries

Proof of Theorem 1.2. The first statement follows from Proposition 2.6.
In particular, if (M, θ) is pseudohermitian C-convex, then |A(Z)| ≤ |H|2.
Plugging this into (2.11) we obtain

K(Z) ≥ 1
2K̃(Z) + 1

2 |H|
2,

which proves inequality (1.8).
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To show that inequalities (1.8) and (1.7) are sharp, we consider the follow-
ing real hypersurface which has been studied in various papers, e.g., [12] and
the references therein. Precisely, let

(3.1) %(z) :=
n+1∑
j=1

|zj |2 + <
n+1∑
j=1

z2
j − 1,

E = {z ∈ Cn+1 : %(z) = 0}, and θE := ι∗(i∂̄%) be a pseudohermitian struc-
ture on E. In the frame Zα := %w∂α − %α∂w, we have

|∂%|2 =

n+1∑
j=1

|zj + z̄j |2 = 2%+ 2, hαβ = hαβ̄ = %2
wδαβ + %α%β,

where α, β = 1, . . . , n and w := zn+1. The Tanaka–Webster pseudohermitian
curvature tensor in this frame is computed, e.g., in [12]. Precisely,

Rαβ̄γσ̄ = −
hαγhβ̄σ̄

2
+
hαβ̄hγσ̄ + hασ̄hγβ̄

2
.

Therefore, for Z = ζαZα ∈ T (1,0)(M) with |Z|2 = hαβ̄ζ
αζ β̄ = 1, we have

K(Z) = 1
2Rαβ̄γσ̄ζ

αζ β̄ζγζ σ̄ = 1
2 −

1
4 |hαγζ

αζγ |2.(3.2)

Observe that (E, θE) is semi-isometrically embedded in Cn+1 with the
euclidean metric (thus, K̃ = 0) and

|H|2 = |∂%|−2 = 1
2 .(3.3)

To show that E is pseudohermitian C-convex, we observe that Aαβ = 1
2hαβ ,

and hence

A(Z) = 1
2hαβζ

αζβ = 1
2%

2
w

n∑
α=1

(ζα)2 + 1
2

( n∑
α=1

%αζ
α
)2
.

Thus,

|A(Z)| ≤ 1
2 |%w|

2
n∑

α=1

|ζα|2 + 1
2

∣∣∣ n∑
α=1

%αζ
α
∣∣∣2 = 1

2hαβ̄ζ
αζ β̄ = 1

2 ,(3.4)

where the equality occurs when, e.g., ζα’s are all real, as %α’s are real. This
and (3.3) mean that E is (nonstrict) pseudohermitian C-convex by Proposi-
tion 2.6, as desired. Moreover, (3.2) and (3.4) show that

(3.5) 1
4 ≤ K(Z) ≤ 1

2 .

Thus, for (E, θE) the equalities in (1.7) and (1.8) do occur.

Remark 3.1. It is easy to see that as a consequence of the Cauchy–
Schwarz inequality the CR holomorphic bisectional curvature of (E, θE) in
the proof above is nonnegative but not strictly positive.
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As already briefly discussed in the introduction, on a CR manifold the
positivity of the Tanaka–Webster scalar curvature does not imply the ex-
istence of a positive scalar curvature Riemannian metric. In particular, it
does not imply the positivity of the scalar curvature of any adapted Web-
ster metric. In [2], Cao, Chang, and Chen introduced the following notion
exhibiting the importance of the torsion: A closed CR 3-manifold is said to
have C0-positive pseudohermitian curvature if there exists a pseudohermitian
structure θ with curvature and torsion satisfying

R|Z|2 + C0Tor(Z,Z) > 0 ∀Z ∈ T (1,0)(M).(3.6)

They proved [2, Theorem 1.1] that if a closed CR 3-manifold is C0-positive
for C0 ≥ 1/2, then the adapted Riemannian metric

gλ := dθ + λ−2θ ⊗ θ(3.7)

has positive scalar curvature for some constant λ.
Cao et al.’s notion of C0-positivity can be generalized to higher dimen-

sions as follows.

Definition 3.2. A pseudohermitian manifold (M2n+1, θ) of real dimen-
sion 2n + 1 ≥ 3 is said to have C0-positive holomorphic sectional curvature
if for all Z ∈ T (1,0)(M), Z 6= 0,

(3.8) K(Z)− C0|A(Z)| > 0.

When n = 1, (3.6) is equivalent to (3.8) since R|Z|2 = 2K(Z) and
Tor(Z,Z) = 2<A(Z).

We obtain the following proposition which implies Corollary 1.3.

Proposition 3.3. If (M2n+1, θ) is a strictly pseudohermitian C-convex
real hypersurface in a Kähler manifold (X , ω) with nonnegative holomorphic
sectional curvature. Then M has 1

2 -positive holomorphic sectional curvature.
In particular, if n = 1 and M3 is compact, then there is a real parameter
λ > 0 such that the (adapted) Riemannian metric

gλ := dθ + λ−2θ ⊗ θ(3.9)

has positive Riemannian scalar curvature.

Proof. If X has nonnegative holomorphic sectional curvature K̃ ≥ 0,
then from Theorem 1.2, we deduce that for |Z| = 1,

K(Z) ≥ 1
2 |H|

2 ≥ 1
2 |A(Z)| ≥ 0,

and hence (M, θ) is 1
2 -positive. Observe that the inequality is strict since M

is supposed to be strictly pseudohermitian C-convex. When n = 1, it follows
that (M, θ) is 1

2 -positive in the sense of [2] and hence the corollary follows
from [2, Theorem 1.1].
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Proof of Corollary 1.4. Let ω = iajk̄dz
j ∧ dz̄k. Then K̃ = 0 and θ = ι∗ω.

On the other hand, the squared mean curvature |H|2 can be easily computed
(see [14]), namely,

|H|2 =
1

|∂%|2
.

Thus the corollary follows from Theorem 1.2.

Proof of Corollary 1.5. From Corollary 1.4, we find that

R = 2K(Z) ≥ |∂%|−2 > 0.

Thus, we can apply (2.1) to deduce that λ1(�b) ≥ 1
2 minM |∂%|−2 and com-

plete the proof.

Remark 3.4. Consider the Reinhardt real hypersurface in C2 given by

Mε := {(z, w) ∈ C2 : (log |z|)2 + (log |w|)2 = ε2}, ε > 0.

This example (and its general dimension version) has been studied in vari-
ous papers; see, e.g., [12] and the references therein. There exists a unique
pseudohermitian structure θε on Mε such that (Mε, θε) is locally isomorphic
to (E, θE) (with n = 1), i.e., there exists a local CR diffeomorphism ϕ in
a neighborhood of each point p ∈ Mε into E such that θε = ϕ∗θE . Thus,
local considerations on Mε and E are the same. Thus, on (Mε, θε), we have
R = |A11| = 1/2 and Mε is C0-positive for any C0 < 1/2. Note that Mε

is diffeomorphic to T3 and hence does not support any positive scalar cur-
vature Riemannian metric by the well-known theorem of Schoen–Yau [13]
and Gromov–Lawson [6]. Thus, the threshold 1/2 for C0 in the aforemen-
tioned theorem of Cao, Chang, and Chen [2] is sharp: The theorem cannot
be extended to the case of C0-positivity with C0 < 1/2.

4. An example: Brieskorn manifolds. The purpose of this section is
to present some examples of semi-isometrically immersed CR manifolds in a
complex euclidean space and in a Kähler manifold of nonpositive holomor-
phic sectional curvature. They are the CR links of the well-known Brieskorn–
Pham singularities, the Brieskorn manifolds, which have been studied in the
literature from many aspects. In several complex variables and CR geometry,
it was studied by, e.g., Ebenfelt, Huang, and Zaitsev [5] who showed that
to certain extent the local CR geometry of a CR link (of a possibly more
general isolated singularity) determines the local complex structure of the
singularity; see [5] and the references therein. These examples show that the
nonnegativity condition of K̃ in Corollary 1.3 is necessary. We also give an
explicit formula for their Tanaka–Webster holomorphic sectional curvature.
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A Brieskorn manifold is the CR link of a Brieskorn–Pham variety defined
by p = 0 where

(4.1) p(z0, z1, . . . , zN ) :=

N∑
j=0

z
aj
j

and aj ’s are integers, aj ≥ 2. These manifolds were also analyzed by
Tanaka [16] as examples of “normal” CR manifolds.

The variety V := p−1(0) has an isolated singularity at the origin. Put

d = lcm{aj : j = 0, 1, . . . , N}, wj = d/aj .

Then p is a weighted homogeneous polynomial with weights (w0, w1, . . . ; d),
that is,

p(λw0z0, λ
w1z1, . . . , λ

wN zN ) = λdp(z0, z1, . . . , zN ).

The link of V at the origin is a Brieskorn manifold M(r) := V ∩ {|z|2 = r},
which is strictly pseudoconvex. In fact, if ζ is |z|2 restricted to V , then away
from the origin, ζ is a strictly plurisubharmonic defining function for M(r)
in V (cf. [16]).

Let

(4.2) θ := ι∗
(
i

2

∑
j

w−1
j (zjdz̄j − z̄jdzj)

)
.

Then θ is a pseudohermitian structure on M(r) (see [16]). Let CN+1 be
equipped with the Kähler metric with the symplectic form

(4.3) ω = i
∑
j

w−1
j dzj ∧ dz̄j

whose primitives include

θ̃ :=
i

2

∑
j

w−1
j (zjdz̄j − z̄jdzj).

Thus, θ = ι∗θ̃ and
dθ = ι∗ω.

That is, (M(r), θ) is semi-isometrically immersed (as a real codimension 3
submanifold) in (CN+1, ω).

Let T denote the vector field generating the S1-action induced by the
C∗-action on V . Thus,

(4.4) T = i

N∑
j=0

wj

(
zj

∂

∂zj
− z̄j

∂

∂z̄j

)
.

Then T is the Reeb field associated to θ. Since the S1-action which T gen-
erates is holomorphic, θ has vanishing pseudohermitian torsion [16, 18]. We
obtain
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Proposition 4.1. The immersion ι : (M, θ) → (V, (ιC
n

V )∗ω) is a semi-
isometric totally umbilical CR immersion.

This follows from the fact that T is holomorphic (via [16] and [18]) and
the relation between the torsion and the second fundamental form in (2.10).
We leave the details to the readers.

Remark 4.2. By the well-known results of Gromov–Lawson [6] and Mil-
nor [10] (see also [11]), we can find among Brieskorn manifolds many exam-
ples of pseudohermitian C-convex real hypersurfaces in Kähler surfaces of
negative holomorphic sectional curvature admitting no positive scalar Rie-
mannian metrics. This shows that the nonnegativity of K̃ in Corollary 1.3
is necessary.

Explicit computations of the (Tanaka–Webster) scalar, Ricci, as well as
the full curvature tensor have been done only for a few examples, see e.g.,
[9, 3, 14]. Proposition 4.3 below gives another one: We use the Gauss equa-
tions in Proposition 2.2 to compute the holomorphic sectional curvature of
a Brieskorn manifold.

Proposition 4.3. The Tanaka–Webster holomorphic sectional curvature
of the Brieskorn CR manifold (M(r), θ) is given by

(4.5) K(Z) =

N∑
j=0

wj |zj |2 −
1

2‖ξ‖2
∣∣∣ N∑
k=0

ak(ak − 1)zak−2
k (Zk)2

∣∣∣2,
where Z = Zk∂k belongs to T (1,0)(M) and has unit length if and only if

N∑
k=0

akZ
kzak−1
k = 0,

N∑
k=0

Zkz̄k = 0, and
N∑
k=0

w−1
k |Z

k|2 = 1.

Our computation below is similar to that of Vitter [17] who computed
curvatures of a general complex hypersurface. In fact, we shall use the fol-
lowing result.

Proposition 4.4 (Vitter [17]). If Z and W are unit (1, 0)-vectors tan-
gent to the nonsingular locus of V , Z = Zj∂j and W = W j∂j, then the
holomorphic bisectional curvature is

(4.6) B̃(Z,W ) = − 1

‖ξ‖2

∣∣∣∣ N∑
j=0

N∑
k=0

∂2p

∂zj∂zk
ZjW k

∣∣∣∣2.
Proof. We reproduce Vitter’s proof [17] for completeness. This is also

helpful since we also need a formula for the second fundamental form of the
immersion ιCn

V : V → Cn in the proof for our later purpose.
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For any X = Xj∂j ∈ T (1,0)(V ) (q ∈ V ), we must have

0 = X(p) =
N∑
j=0

Xj ∂p

∂zj
=

N∑
j=0

w−1
j Xj

(
wj

∂p

∂zj

)
.

Therefore, if

ξ =
N∑
j=1

wj

(
∂p

∂zj

)
∂

∂zj
,

then N := ξ/‖ξ‖ is a (1, 0)-normal vector of V .
For any (0, 1)-vector W that is tangent to V , we have

∇̃WN = ∇̃W

(
ξ

‖ξ‖

)
=

(
W

(
1

‖ξ‖

))
ξ +

(
1

‖ξ‖

)
∇̃W ξ.

Since ∂/∂zj is parallel with respect to ∇̃, we have

∇̃W ξ =
N∑
j=0

(
W

(
wj

∂p

∂zj

))
∂

∂zj
=

N∑
j=0

( N∑
k=0

W
k
wj

(
∂2p

∂zj∂zk

))
∂

∂zj
.

Therefore, for any Y = Y
j
∂j̄ , we have

〈∇̃W ξ, Y 〉 =
N∑
j=0

w−1
j

( N∑
k=0

W
k
wj

(
∂2p

∂zj∂zk

))
Y
j

=

N∑
j=0

N∑
k=0

W
k
(

∂2p

∂zj∂zk

)
Y
j
.

If Y is tangent to V , then by the Weingarten formula, we have

〈N, IICN

V (W,Y )〉 = −〈∇̃WN,Y 〉

= − 1

‖ξ‖

N∑
j=0

N∑
k=0

W
k
(

∂2p

∂zj∂zk

)
Y
j
.

Thus,

(4.7) IIC
N

V (W,Y ) = − 1

‖ξ‖

( N∑
j=1

N∑
k=1

W
k
(

∂2p

∂zj∂zk

)
Y
j
)
N,

where

‖ξ‖2 =
N∑
j=0

wj

∣∣∣∣ ∂p∂zj
∣∣∣∣2.

Thus, the Gauss equation for Kähler submanifolds together with (4.7) yields
the desired formula (4.6) immediately.
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Proof of Proposition 4.3. When p is the Brieskorn–Pham polynomial
given in (4.1) we have

‖ξ‖2 = d
N∑
j=0

aj |zj |2aj−2,

and, by Vitter’s formula above, the holomorphic bisectional curvature of the
Brieskorn–Pham variety is

B̃(Z,W ) = − 1

‖ξ‖2
∣∣∣ N∑
k=0

ak(ak − 1)zak−2
k ZkW k

∣∣∣2.
Consider the CR immersion ιVM : M → V . As (M, θ) has vanishing tor-

sion, we have
0 = 〈τZ,W 〉 = −〈H, IIVM (Z,W )〉,

and since the normal bundle N (1,0)(M) in T (1,0)(V ) has 1-dimensional fibers
while H 6= 0, we have

(4.8) IIVM (Z,W ) = 0, ∀Z,W ∈ T (1,0)(M).

If H is the (1, 0)-mean curvature vector of the immersion ιCn

M and T is the
Reeb field, then by [14], iT = H −H and thus (by (4.4))

(4.9) H = −
N∑
j=0

wjzj
∂

∂zj
.

The restriction of H to M is the (1, 0)-mean curvature vector of the immer-
sion ιVM . Then

B(Z,W ) = 1
2B̃(Z,W ) + 1

2 |H|
2(1 + 〈Z,W 〉2).

From this, equation (4.9), and the formula of Vitter (4.6) we obtain the
formula for the holomorphic bisectional curvature:

B(Z,W ) =
1

2
(1 + 〈Z,W 〉2)

N∑
j=0

wj |zj |2−
1

2‖ξ‖2
∣∣∣ N∑
k=0

ak(ak − 1)zak−2
k ZkW k

∣∣∣2,
which reduces to the desired formula (4.5) for the holomorphic sectional
curvature by setting Z = W .

We conclude this section by pointing out a quite interesting property of
the Brieskorn manifolds, the nowhere CR umbilicity. On a Levi-nondegerate
CR manifold of dimension at least 5 a point p is said to be CR umbilical if the
Chern–Moser–Weyl tensor (i.e., the completely tracefree part of the Tanaka–
Webster curvature tensor Rαβ̄γσ̄ [18]) with respect to some (equivalently, to
any) pseudohermitian structure θ vanishes at p. The Chern–Moser–Weyl ten-
sor and CR umbilicality are important biholomorphic invariants. Compact
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nowhere CR umbilical CR manifolds are interesting as they admit a distin-
guished contact form, the principal contact form, with respect to which the
Chern–Moser–Weyl tensor has unit norm. The first known examples of such
manifolds were given by Webster [19]. They are the generic real ellipsoids
in complex space. Webster also proved that the corresponding Reeb fields
are “completely integrable.” A principal contact form, if it exists, is useful
for studying CR (or biholomorphic) equivalences of CR manifolds (or the
complex domains they bound); see, e.g., [12, Section 5].

The Brieskorn manifolds give a wealth of examples of nowhere CR um-
bilical manifolds.

Corollary 4.5. Let a = (a0, a1, . . . , aN ), N ≥ 3, and let M(r) be the
Brieskorn manifold. If ak ≥ 2 for all k, then the Chern–Moser–Weyl tensor
of M never vanishes and hence M admits a unique principal contact form.

Proof. Since (M, θ) is totally umbilical in V , from Proposition 4.1 we
have

(4.10) tf IIC
N

M = tf IIC
N

V |M
where tf denotes the trace-free part of a tensor. Equation (4.7) above shows
that tf IIC

N

V |M never vanishes on M if ak ≥ 2 for all k. Thus the assertion
follows from [14, Proposition 3.3].
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