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THE HOLOMORPHIC SECTIONAL CURVATURE
AND “CONVEX” REAL HYPERSURFACES
IN KAHLER MANIFOLDS
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DUONG NGOC SON (Wien)

Abstract. We prove a sharp lower bound for the Tanaka—Webster holomorphic sec-
tional curvature of strictly pseudoconvex real hypersurfaces that are “semi-isometrically”
immersed in a Ké&hler manifold of nonnegative holomorphic sectional curvature under
an appropriate convexity condition. This gives a partial answer to a question posed by
Chanillo, Chiu, and Yang regarding the positivity of the Tanaka—Webster scalar curva-
ture of the boundary of a strictly convex domain in C? from 2012. In fact, the main result
proves a stronger positivity property, namely the %—positivity in the sense of Cao, Chang,
and Chen, for compact “convex” real hypersurfaces in a Kdhler manifold of nonnegative
holomorphic sectional curvature. Our approach is rather simple and uses a version of
the Gauss equation for semi-isometric CR immersions of pseudohermitian manifolds into
Kaéhler manifolds.

1. Introduction. Let (M,0) be a pseudohermitian manifold and let
R,5,5 be the Tanaka-Webster curvature tensor of 6 [I6, [I8]. The holo-
morphic sectional curvature K(Z), the Ricci tensor Rz, and the scalar
curvature R can be defined as usual. For example, Webster [I8] defined
the holomorphic sectional curvature of (M, #) for each nonzero (1,0)-vector

Z = (“Z, by

(1.1) K(Z) = §Rap,5C*¢°CC7 /| 2]

These curvature quantities essentially coincide when M is 3-dimensional;
they are fundamental in the study of pseudohermitian geometry and CR
geometry of Levi-nondegenerate real hypersurfaces (or more generally, Levi-
nondegerate CR manifolds of hypersurface type) and have been investigated
extensively in the literature. For example, in the 1970s Tanaka [16] proved
that for compact manifolds of dimension greater than 3 if the Tanaka-
Webster Ricci tensor is positive then the first Kohn-Rossi group H%' (M) is
trivial (Tanaka’s statement is actually more general; see [16, Proposition 5.3]
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for details). In the 2010s, Chanillo, Chiu, and Yang [3] proved that for a com-
pact 3-dimensional strictly pseudoconvex CR manifold, the positivity of the
scalar curvature and the nonnegativity of the CR Paneitz operator imply em-
beddability into a complex space. This result partially motivated further re-
search on the positivity of the scalar curvature and the CR Paneitz operator.
Chanillo, Chiu, and Yang [4] proved, among other interesting results, that
the scalar curvature R is positive on a real ellipsoid of C? [4, Theorem 1.2].
In general dimension, a positive lower bound for the Tanaka—Webster Ricci
tensor on a real ellipsoid can be deduced from Li-Tran [9] which studies a
lower estimate for the eigenvalue of the sub-Laplacian [9, Theorem 1.1|. In
[4, p. 81], Chanillo, Chiu, and Yang posed an interesting question whether
the scalar curvature R must be positive on strictly convex domains in C2.

In this paper, we give a partial affirmative answer to this question for
a special class of real hypersurfaces in C2. More precisely, for the “pluri-
harmonic perturbations” of the sphere, the C-convexity (a weaker notion
of the usual convexity; see, e.g., [1]) does imply a positive lower bound for
the holomorphic sectional curvature K(Z). This is a special case of a more
general result for pseudohermitian manifolds that are “convex” (in an appro-
priate sense) “semi-isometrically” immersed (in the sense of [14]) in a Kéahler
manifold having nonnegative holomorphic sectional curvature. Here, the new
notion of convexity is defined as follows. First, recall that a pseudohermi-
tian manifold (M,0) C (X,w) is said to be semi-isometrically immersed in
a Kéhler manifold (X,w) if df = (*w, where ¢ is the inclusion. The second
fundamental form II for ¢ is defined using the Chern connection V on X and
the Tanaka—Webster connection V on M via the Gauss formula, that is,

(1.2) I(X,Y):=VxY - VxY

for vector fields X,Y € CT(M), extended smoothly to vector fields in
CT(X). If Z, is a local unitary frame for 700 (M), then the (1,0)-mean
curvature is defined [I4] by

(1.3) _HzﬁiM%Jm.

a=1

Then H is a section of the normal bundle N9 (M), the orthogonal com-
plement of T (M) in TMO(X) [14]. The real mean curvature vector is
defined by

(1.4) p=3%H+H).

If M is a real hypersurface in X, then the (1,0)-normal bundle N0 (A1)
has 1-dimensional fibers and the restriction 1|y (yr), H(M) = RTL0) (M),
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is determined by a scalar-valued form
(1.5) B(X,Y) = (I(X,Y), w)/lul. XY € H(M).

We can state the definition of the C-convexity that is relevant for our pur-
poses as follows.

DEFINITION 1.1. Let (M,0) C (X,w) be a strictly pseudoconvex semi-
isometrically immersed real hypersurface in a Kéahler manifold. We say that
(M, 0) is pseudohermitian C-convez if the scalar second fundamental form
h is positive semi-definite in the complex tangent space H(M).

Clearly, this definition is analogous to the well-known notion of C-con-
vexity for subsets of C"*! or CP"*! in the complex analysis literature; see [I]
and Section 2.3

In analogy with the notion of holomorphic sectional curvature ,
we define the holomorphic sectional torsion A(Z) for each nonzero vector
Z =(Z, in THO (M) by

(1.6) A(Z) = iAap¢(P /|1 2P,

where A, is the pseudohermitian torsion; see Section 2 for details. It
should be mentioned that twice the real part of |Z|?A(Z), often denoted
by Tor(Z, Z), i.e.

Tor(Z, Z) := iAapC(P — i455¢5CP,
plays an important role in several problems in the pseudohermitian geome-
try. We mention here, for example, the Lichnerowicz-type estimate for the
first positive eigenvalue of the sub-Laplacian (see e.g. [9] and the references

therein) and the classification of the closed CR torsion solitons [2].
We have the following theorem.

THEOREM 1.2. Let (M,0) be a pseudohermitian real hypersurface of a

Kahler manifold (X,w) with df = *w. Then (M, 0) is pseudohermitian C-
convex if and only if

(1.7) [A2)| < [H[?

for all Z € TOO(M), Z # 0. In this case the Tanaka—Webster holomorphic
sectional curvature K of (M,0) and the holomorphic sectional curvature K
of (X,w) satisfy

K(Z)+|H|?
(1.8) K(7) > ();H
Moreover, the inequalities are sharp.

The difference between the coefficients of K and K in (I.8)) is artificial
and due to the factor % in (L.I)), which was chosen by Webster [I8] so that
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the hypersphere |z|> = 1 with the “standard” pseudohermitian structure
6 := i0|z|? has constant curvature +1.

The arguably simplest case in which Theorem [I.2] applies is when X
is a Kéhler surface of nonnegative holomorphic sectional curvature. In this
case, (M, 0) is three-dimensional and its pseudohermitian C-convexity im-
plies the positivity of the Tanaka—Webster scalar curvature. In analogy with
the positive scalar curvature problem in Riemannian geometry, we can ask:
what CR manifolds can be endowed with a positive Tanaka—Webster scalar
curvature pseudohermitian structure? In a certain sense the existence of
such a structure is weaker than its Riemannian analogue. In fact, there are
CR manifolds diffeomorphic to the 3-torus T? which admit pseudohermitian
structures of positive Tanaka-Webster scalar curvature (see Remark 3.4),
while tori of dimension at least 3 admit no positive scalar curvature Rieman-
nian metric [I3]. Recently, Cao, Chang, and Chen [2] considered a condition
stronger than the positivity of the Tanaka—Webster scalar curvature, the
Co-positivity, which involves both curvature and torsion. For compact CR
3-manifolds they proved that the Cy-positivity with Cy > 1/2 implies the
positivity of an adapted Riemannian metric. Moreover, the threshold 1/2 is
sharp (see Remark 3.4).

Combining this result and Theorem [I.2] we obtain the following

COROLLARY 1.3. Let (M3, 0) be a compact 3-dimensional strictly pseudo-
hermitian C-convex real hypersurface in a Kdhler surface (X, w) with nonneg-
ative holomorphic sectional curvature. Then M admits a Riemannian metric
of positive curvature.

We point out that both the convexity of (M?3,6) and the nonnegativ-
ity of the sectional curvature of the ambient space are necessary for Corol-
lary . Indeed, consider the CR link ¥ (p, ¢, r) of a Brieskorn—Pham singu-
larity V(p,q,7) := {2} + 24 + 25 = 0} C C3. Generally, V(p,q,r) with the
induced metric from a suitable flat metric on C® has nonpositive holomor-
phic sectional curvature. For an appropriate choice of contact form 6, the
link X (p, q,r) is a pseudohermitian C-convex (in fact, of vanishing pseudo-
hermitian torsion) real hypersurface in V(p,q,r). On the other hand, it is
well-known that many of these CR links admit no positive scalar curvature
metrics [0, [10]; see also [II]. Thus, we obtain a wealth of examples which
show that the nonnegativity of K in Corollary is necessary. See Section
for details.

In the rest of this introduction, we describe a concrete and familiar situa-
tion in which the pseudohermitian C-convexity in the sense of Definition [I.]
coincides with the well-known and more intuitive notion of C-converity in
complex analysis as defined in [I]. The latter, in turn, is weaker than the
“usual” convexity for subsets of the complex euclidean space. We thus obtain
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a family of manifolds for which the pseudohermitian C-convexity is evident.
More precisely, let M C C™*! be a real hypersurface defined by ¢ = 0 with
do # 0. Recall that if the restriction of the Hessian of ¢ onto the complex
tangent space H (M) is positive semi-definite, then M is C-convex [I].
In what follows, we shall assume the following condition holds along M:
32
(1.9) a%;%:aﬂ+0@%

where a;z, is a positive definite Hermitian matrix with constant entries. Then

M is strictly pseudoconvex. Let 6 = ¢* (i00) be a pseudohermitian structure
on M and w = ia;zdz’ Adz* the Kihler form of a flat Kéhler metric on C"*+1.
Clearly,

df = fw.

Thus, ¢ is semi-isometric. In Proposition [2.5, we prove that under condi-
tion (1.9) M is pseudohermitian C-convex if and only if M is C-convex in
the sense of [I]. Moreover, let

n+1

(1.10) |00|? == Z a*o; 0
Jh=1

be the squared-length of Jg in the (dual) metric w. Then |H|?> = 1/|0g|?. In
fact, |H|? coincides with the Graham~—Lee transverse curvature of the defining
function; see [14]. As a consequence of Theorem [1.2| and Proposition we
have the following

COROLLARY 1.4. Let (M,0) be given as above and assume that (|1.9))
holds. If M is C-convex then (M,0) has %—positive holomorphic sectional

curvature. More precisely, for any (1,0)-vector Z € 7(10) (M), Z #0,
(1.11) K(2) = L0072 = 1|A(2)].
The inequalities are sharp.

Corollary generalizes [4, Theorem 1.2| and [9] about the positivity
of the Tanaka—Webster scalar curvature on real ellipsoids. Recall that an
ellipsoid E in C? = R* is a compact real hypersurface given by the equation

az? + by? + cu® + dv?® = 1.
In complex coordinates z = x + iy, w = u + iv, we have
E = {(z,w) € C*: o= alz|* + Blw|* + R(yz* + ow?) — 1 = 0},

where v = (a+b)/2,8 = (c+d)/2,v = (a—b)/2, and 0 = (c—d)/2. Put 0 =
1*(i00), where 1: E — C? is the inclusion. Then (FE, ) is semi-isometrically
immersed in C? with the metric adz®dz+ Bdw®dw. As E is strictly convex,
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it is strictly C-convex in the sense of [I] (hence pseudohermitian C-convex
in the sense of Definition by Proposition . Thus

1 af
2 =22 6P = BloP + alou
In particular, R > 0, which was proved before in [9] and [4].

Evidently, a real ellipsoid in general dimension is strictly convex and the
same argument as above also shows that its holomorphic sectional curvature
is bounded below by (00|72 > 0.

A motivation for studying lower estimates of the scalar curvature is to
bound the first positive eigenvalue A1(0J;) of the Kohn Laplacian O, :=
0;0p + 0p0; from below. Such a lower bound was first obtained in [3] under
the nonnegativity of the CR Paneitz operator (see [3| and [I5] for more
details on the CR Paneitz operator and [§] for higher-dimensional version of
this estimate). Combining Corollary Chanillo, Chiu, and Yang’s lower
bound [3], and the recent result of Takeuchi [I5], we obtain

COROLLARY 1.5. Let M be a compact strictly pseudoconvexr pseudohermi-
tian real hypersurface C* defined by o = 0 and let § = i0p. Assume that
holds. If M is C-convex, then the first positive eigenvalue \1(0p) of the Kohn
Laplacian acting on functions satisfies

1 1
> “min| —— |.
(1.13) A1(0p) 2H]1\}n<‘ Q\2>

REMARK 1.6. When 05 = djk, the Kronecker symbol, it was proved by
Li, Lin, and the author [7] that

1
1.14 L) < —
(1.14) A(0p) < averageM<‘ag|2>

where the averaging is taken with respect to the volume form dAd6. In (|1.13)),
due to the factor 1/2 on the right-hand side, the estimate is not expected to
be sharp. In view of , it is interesting whether one can improve (|1.13])
with the constant 1 on the right-hand side.

2. Background and basic results

2.1. Pseudohermitian structures on real hypersurfaces. In this
section, we introduce several basic notions and results of pseudohermitian
geometry of nondegenerate real hypersurfaces in a complex manifold. For
further details, we refer the readers to [16] and [18].

Let M C X be a strictly pseudoconvex real hypersurface in a complex
manifold. The CR structure on M is induced from the complex structure
on X', namely,

T (M) = TOO(X) N CT(M).
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The real hyperplane H(M) := R(TM0(M)) ¢ T(M) is the kernel of a
nonvanishing real 1-form 6. By strict pseudoconvexity, df is positive or neg-
ative definite when restricted to H(M). For simplicity, we assume that df is
positive definite on H(M). The triple (M, TM0 (M), ) is called a pseudo-
hermitian manifold [1§].

Fix a pseudohermitian structure 6. There exists a unique real vector
field T transverse to H, the Reeb vector field, such that

T|do =0, 6(T)=1.

Let Z,, a = 1,...,n, be a local frame for T (M) and let Zz = Z, be
the conjugates. Then {Z,, Z5, T} is a local frame for CT'(M). Its dual frame
{6%,0%, 0} is called an admissible coframe if

df = ih,z0° N 6°,

where h,, 3 is a positive definite Hermitian matrix. We use h,3 and its inverse
transpose h*? to lower and raise the Greek indices.

On a pseudohermitian manifold, there is a canonical linear connection—
the Tanaka—Webster connection [16} [I8]—which can be defined by

VZa=waZs, VZa=ws’Z5 VT =0,
where the connection forms w,” satisfy the following structural equations:
6% = 0% N w.” + AP50 1 67,
dh,z = woﬂhmg + h(wwgfy.

The tensor A,g is the pseudohermitian torsion, which is shown to be sym-
metric: Aqg = Agq [18]. The curvature form 25 = dwo® — wa? A w~? of the
Tanaka—Webster connection satisfies

207 =RE 500 N0 —VPALONO + VAP0 N OT
— i Aay07 N OP +ihas AP 507 N 62

The tensor Ra575 is called the Tanaka—Webster curvature. It has the follow-
ing symmetries:
Ra,é'y& = R’yﬁa& = Ra&'yB'

As usual, contraction of indices gives the Ricci tensor R, 5 = hW_’Raﬂ-w and
the scalar curvature R = hO‘BRaB. The Tanaka—Webster holomorphic sec-
tional curvature is defined similarly to the Hermitian or Kahler case by (|L.1]).
For CR 3-manifolds, these three curvature quantities are essentially the same.

The fundamental Chern—Moser invariant of Levi-nondegenerate CR man-

ifolds can be “represented” by the completely tracefree part of the Tanaka—
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Webster curvature, the Chern—Moser—Weyl tensor Sg®+5 [18]. Precisely,
Rg®hyz + Ry“hps + 05 Ryg + 05 Ras
n+2

Sﬁavﬁ = Rﬁavﬁ -
R(6Ghys + 05hss)
(n+1)(n+2) ’
where dim M =2n +1 > 5.

Let f be a smooth function on a compact pseudohermitian manifold M.
We can write

df = faf® + f30° + fob.

The Kohn Laplacian Oy: C*(M,C) — C*°(M,C) acting on functions,
Upf = 050 f, can be expressed locally by

O f = —fa",
where an index preceded by a comma indicates a Tanaka—Webster covariant
derivative. For compact embeddable strictly pseudoconvex CR manifolds,
the spectral theory of [, is well-understood. Combining Chanillo, Chiu, and
Yang [3] and Takeuchi [15], we find that the first positive eigenvalue Aj ()
on embeddable CR 3-manifold satisfies

2.1 A(0p) > tmin R.
(2.1) 1(0h) = fmin R
This is meaningful when (M, ) has positive Tanaka—Webster scalar curva-

ture. For the case n := dimgg M > 2, if the Tanaka—Webster Ricci curvature
is bounded below by x > 0, then

(2.2) A(0s) >

n
n+1

K3
see [8].

2.2. Semi-isometric CR immersions and the Gauss equations.
Let M C C"! be a strictly pseudoconvex CR manifold and let ¢ be a
defining function for M, i.e., M = {p = 0} and dp # 0 along M. If in
addition p is strictly plurisubharmonic, then it induces a Kéhler metric w =
i00p on a neighborhood U of M. The pseudohermitian structure 6 := ¢t*(idp)
and the Kéahler form w satisfy df = (*w and thus ¢: M — U is a semi-
isometric immersion in the terminology of [14].

DEFINITION 2.1 ([14]). Let (M, 0) be a strictly pseudoconvex pseudoher-
mitian manifold, (X,w) a Kéahler manifold, and F': M — (X,w) a smooth
CR mapping. We say that F' is semi-isometric if
(2.3) o = F*w.

If M C X and if the inclusion ¢: (M,0) — (X,w) is semi-isometric,
then we say that (M, 0) is a pseudohermitian submanifold of (X, w). In this
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situation, the pseudohermitian geometry of (M, 6) and the Kahler geometry
of the ambient manifold (X', w) are related via the Gauss equations [14]. We
describe this in more detail as follows. Let V and V be the Tanaka—Webster
connection of (M, #) and the Chern connection of (X, w), respectively. Then
the second fundamental form of M is defined by the Gauss formula (cf. [14])

W(Z,W) := VW — V,W.

Here Z and W are smooth extensions of Z and W to a neighborhood of a
point of M in X. Taking the trace of Il on horizontal directions, we obtain
the (1,0)-mean curvature vector field

(2.4) H = izn:n(za,za).
a=1

Basic properties of I and H were given in [14]. For example, I is non-
symmetric, but for Z, W € T (M),

(25) 1(Z,W) = (W, 2),
while for Z € T (M) and W e TOD (M),
(2.6) W ZW)-0U(W,2)=—i{ZW)T,

where T is the Reeb vector field. Moreover,
(2.7) W(Z, W)= (ZW)H.

We say that ¢ is totally umbilical if I(Z,W) = 0 for all (1,0)-vectors Z
and W.

We shall use the following conventions for the curvature operator and the
torsion of V:

R(X,Y)Z =VxVyZ -VyVxZ -V xyZ,
Ty(X,Y)=VxY - VyX — [X,Y].

Denote by 7 the pseudohermitian torsion, i.e.,

(2.8) X =Ty (T, X).

The Levi metric on M and the K&hler metric on X will be denoted by (-, -).

The curvature of the Chern connection of w will be denoted by R. The Gauss
equations are as follows:

PROPOSITION 2.2 (Gauss equations [14]). Let ¢: (M,0) — (X,w) be
a pseudohermitian submanifold of a Kdhler manifold. Let R and R be the
curvature operators of the Tanaka—Webster and Chern connections on M
and X, respectively. Then
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(1) for X,Z € (TGO (M)) and Y, W € I'(T%'(M)), the following Gauss
equation holds:

(2.9) (R(X,Y)Z, W) =(R(X,Y)Z,W) + (I(X, Z), LY, W))
- ‘H’2(<?7 Z><X7W> + <X7?>< 7W>)7

(2) for X,Z € [(TUO(M)),

(2.10) (tX,7) = —i{l(X, Z), H).

The Gauss equation (2.9)) is similar to several versions in the literature
(cf. [5]) and has found several applications [14], [12]. For example, Reiter
and the author [I2] used this equation to establish an explicit and concise
formula for the well-known Chern—Moser—Weyl tensor. On the other hand,
equation ([2.10)), which has no Riemannian counterpart, relates the (intrinsic)
torsion of the submanifold and the (extrinsic) second fundamental form of

the immersion. This equation will also be of importance for us.
As a consequence of the Gauss equations we have the following

PROPOSITION 2.3. Let v: (M,0) — (X,w) be a real hypersurface of a
Kdhler manifold with df = 1*w and let H be the (1,0)-mean curvature vector
of M. Let K and K be the holomorphic sectional curvatures of 0 and w,
respectively, and let A be the holomorphic sectional torsion of 0. Then

(2.11) K(Z)+ 3 A2)P/|H? = 3K (Z2) + |H? vZ e T8O (M).

Moreover, (M,0) has wvanishing pseudohermitian torsion if and only if
t: M — X is totally umbilical.

Proof. Let Z € T (M) with |Z| = 1. From the Gauss equation (2.9)
we get

(2.12) 1K(Z)=K((Z)+ i1z, 2)]* - |H>.
On the other hand, from and , we also have
iAapCCP =i(r2,Z) = ((Z,2), H) =2 h(Z, Z)|H|.
But I(Z, Z) belongs to N0 (M) which has 1-dimensional fibers, we have
(Z,Z)=V2h(Z,Z)H/|H|,
and therefore, since |Z| = 1, we have
(Z,2)? = 2|2, Z)]* = |A(Z)?/|H .

Plugging this into we obtain . Moreover, # has vanishing torsion
iff A(Z)=0iff1(Z,Z) = 0 for all Z € T (M). But this is also equivalent
to I(Z,W) = 0 for all Z,W € TWO(M) since I is symmetric and bilin-
ear when restricted to T (M), i.e., M is totally umbilical. The proof is
complete. m
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2.3. Pseudohermitian C-convexity. A domain 2 C CP"*! is C-
convex if any nonempty intersection of 2 with a complex line is connected
and simply connected. This notion of convexity plays an important role in
several problems in complex analysis related to the geometry of (weakly or
strongly) pseudoconvex domains in complex euclidean or projective spaces;
see [I] for some motivations and more details. For bounded domains with
C?-smooth boundaries in C* C CP", there is also a differential condition
for the C-convexity which involves the Hessian of a defining function. This
condition is described as follows. If p is a real-valued C2-smooth function,
then the Hessian of g is the following quadratic form:

(2.13) Hess,(a;n) Z% ojk(a)nink) +ZQ]k a)nng, neC

The boundary characterlzatlon of the (C—convex1ty is as follows.

PROPOSITION 2.4 (see [I, Theorem 2.5.18]). Suppose §2 is a C?-smoothly
bounded domain with a real-valued C?-smooth defining function o, i.e., 2 =
{0 < 0} with do # 0 on the boundary of £2. Then the following are equivalent:
(1) The domain 2 is C-convex.

(2) The restriction of the Hessian of o at any boundary point p € 012 to the
complex tangent plane through p is positive semi-definite.

The condition that Hess, is positive (semi-)definite on the complex tan-
gent plane is often called the “Behnke—Peschl” condition; it implies the weak
pseudoconvexity of the domain. Clearly, the C-convexity is mot invariant
under general biholomorphic mappings of C™ or CP". Thus it cannot be
generalized to real hypersurfaces in an arbitrary complex manifold without
additional structures (e.g. a Kéhler metric). For subsets of complex pro-
jective space, this convexity gives a rather strict constraint. For example,
a C-convex domain in C must be diffeomorphic to the ball [I].

The notion of pseudohermitian C-convexity in Definition is analogous
to the notion of C-convexity in Proposition but the former depends
essentially on the pseudohermitian structure on M and the Kéahler metric
on the ambient space. We prove below that for a class of pseudohermitian
real hypersurfaces in C**! these two notions of convexity coincide.

PROPOSITION 2.5. Let M C C™t1! be a strictly pseudoconvex real hyper-
surface defined by o = 0 with do # 0. Suppose that 05 = aﬂ-ﬂto(g) along M ,
where [a,g] is a hermitian matriz of constants. Let 6 = 1*(idg). Then (M, 6)

is a semi-isometric real hypersurface in C"+1 equipped with the hermitian
metric a;pdz? ® dz*. Moreover, the following are equivalent:

(1) M is C-convex. .
(2) (M,0) is pseudohermitian C-convex in (C" !, a;zdz’ ®dz") in the sense

of Definition [L.1]
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Proof. The last assertion follows from explicit formulas for the second
fundamental form in [I4] and [I2]. Notice that the Levi matrix h,z in the
frame Z, := 0404 — 040w 18 given by

hog = —id0(Za, Z5) = 077(Za: Z5),

where g, is the Hermitian part of the Hessian of p. Following [12], we define
the second order differential operator

Dgﬁ = gﬁ)aaaﬁ — 0w0a0uw0B — 0w0B0WOa + gaglgafv,

which satisfies
DE4(p) = 022(Zar Z3)-
From [12, Prop. 2.2], we have
(Za, Z5) = —(0" D3 (05) — hag) H.
On the other hand, from [14] we have
W(Za, Z5) = —057(Za; Z5) H.
Thus, for Z =(*Z, € T,SLO)(M), from we have
WZ+Z,Z+2),
= V2[H|(R(— " Dag(0p)C*C” + hap¢®CP) + hog(¢7) | -

If o;;’s are constants, then D.s(0;) = 0, and thus the scalar-valued second

fundamental form h restricted to H (M) reduces essentially to the restriction
of the usual Hessian of p. Precisely,

WZ + 2,2+ Z)lp = V2| H|(ha¢*¢" + R(hasC*¢))ly
= V2 |H| Hess,(p; Z).
Hence, when g ;’s are constants, the pseudohermitian C-convexity condition

in Definition is exactly the condition for domains in C"*! in Proposi-
tion [2.4] The proof is complete. m

PROPOSITION 2.6. Let (M, 60) be a semi-isometrically immersed real hy-
persurface in (X,w) with (1,0)-mean curvature vector H. Then (M,0) is
pseudohermitian C-convex if and only if

(2.14) |A(Z)| < |H)? VZeTMO (M), Z +0.
Moreover, (M,0) is stricly pseudohermitian C-convex iff strict inequality

holds in (2.14).

Thus, if (M, #) has vanishing pseudohermitian torsion, then for any (real
codimension 1) semi-isometric CR immersion ¢: (M, 0) — (X,w) the image
(M) must be pseudohermitian C-convex in (X, w).
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Proof of Proposition[2.6. Assume that M is pseudohermitian C-convex.
By the Gauss equation, for Z € T00 (M) with |Z| = 1 we have

AZ)=irZ,Z)=((Z,Z),H).
By the pseudohermitian C-convexity, the real-valued form h defined in ([1.5))
is positive semi-definite on H(M). Applying this positivity to the vector
iZ — iZ, we have

h(iZ —iZ,iZ —iZ) >0
which is equivalent to
R((Z,Z),H) —RN(Z,Z),H) >0.
Thus,
RA(Z) = R(W(Z, Z), H) < R (1(2,7), H) = |H[*.

Furthermore, by the difference in homogeneity, this is equivalent to

AZ)| < |H]? vz e T (),
as desired. The proof of the converse uses similar calculation. We leave the

details to the readers. m

ExampLE 2.7 ([Il, Example 2.5.14]). Consider for ¢ € [0, 1] the Hartogs
domain

E; = {(z,w) € C*: =1+ |2)* + |w|* + t(R2*)? < 0}.

Evidently, E; is bounded. It has been shown in [I] that E; has smooth
boundary and is convex for 0 < ¢ < 3/4 and nonconvex for 3/4 < t < 1.
However, it is C-convex for ¢ € [0,1] and thus the C-convexity is a weaker
condition than the “usual” convexity.

For any ¢, the Tanaka—Webster scalar curvature R of 6 := i0p at a
point (0,€7) is 2(1 —¢). If t = 1 then R = 0 on the circle (0,¢'"). Thus,
the C-convexity alone is not enough for R to be bounded below by the
Graham-Lee transverse curvature. We point out that each E; can be semi-
isometrically embedded as a real codimension 3 CR submanifold of C? with
the flat metric by the embedding (z,w) +— (z,w,/t/22?). But the notion
of pseudohermitian C-convexity is not well-defined for higher-codimensional
immersions.

3. Proofs of Theorem [I[.2] and its corollaries

Proof of Theorem[I.3. The first statement follows from Proposition [2.6]
In particular, if (M, ) is pseudohermitian C-convex, then |A(Z)| < |H|%.
Plugging this into (2.11)) we obtain
K(Z) > K(Z) + 3|H,

which proves inequality (1.8]).
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To show that inequalities ([1.8)) and (|1.7]) are sharp, we consider the follow-
ing real hypersurface which has been studied in various papers, e.g., [12] and
the references therein. Precisely, let

n+1 n+1

(3.1) o(z) = |5+ RY 27 -1
=1 i=1

E = {z € C": o(2) = 0}, and 0 := 1*(iDp) be a pseudohermitian struc-
ture on E. In the frame Z, := 040n — 000w, We have
n+1
00| = Z 12+ 2" =20+2,  hap =hyz = 02008 + 0a03;
j=1
where o, 8 = 1,...,n and w := z,11. The Tanaka—Webster pseudohermitian
curvature tensor in this frame is computed, e.g., in [12]. Precisely,

howh,éa n hthAya + hagh,y/g‘

Rapre = — ) 92
Therefore, for Z = ¢*Z, € TWO (M) with |Z|2 =h -CO‘CB = 1, we have
(3:2) K(Z) = §Rop,56"¢PCC7 = § = Hlhan ¢

Observe that (E,0F) is seml-lsometrlcally embedded in C"*! with the
euclidean metric (thus, K = 0) and

(3.3) |H|? = |00 =

To show that E is pseudohermitian C—convex, we observe that A,3 = %hag,
and hence

A(Z) = 3ot = 32 S (€ + 3(3 0ac)
a=1
Thus,
(34) A2 < Houl DI+ %\Zgaca
a=1 a=1

where the equality occurs when, e.g., (*’s are all real, as g, ’s are real. This
and (3.3) mean that E is (nonstrict) pseudohermitian C-convex by Proposi-

tion as desired. Moreover, (3.2) and (3.4)) show that
(3.5) L<K(z)<}
Thus, for (E,0g) the equalities in (|1.7) and (1.8]) do occur. m

REMARK 3.1. It is easy to see that as a consequence of the Cauchy—
Schwarz inequality the CR holomorphic bisectional curvature of (E,0g) in
the proof above is nonnegative but not strictly positive.

_ lhaﬂcacﬂ o %
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As already briefly discussed in the introduction, on a CR manifold the
positivity of the Tanaka—Webster scalar curvature does not imply the ex-
istence of a positive scalar curvature Riemannian metric. In particular, it
does not imply the positivity of the scalar curvature of any adapted Web-
ster metric. In [2], Cao, Chang, and Chen introduced the following notion
exhibiting the importance of the torsion: A closed CR 3-manifold is said to
have Cy-positive pseudohermitian curvature if there exists a pseudohermitian
structure € with curvature and torsion satisfying

(3.6) R|Z]> + CoTor(Z,Z) >0 VZ e T (M).

They proved |2, Theorem 1.1] that if a closed CR 3-manifold is Cy-positive
for Cyp > 1/2, then the adapted Riemannian metric

(3.7) g i=do+1"0®0

has positive scalar curvature for some constant A.
Cao et al.’s notion of Cy-positivity can be generalized to higher dimen-
sions as follows.

DEFINITION 3.2. A pseudohermitian manifold (M?"*! ) of real dimen-
sion 2n + 1 > 3 is said to have Cy-positive holomorphic sectional curvature

if for all Z € T(LO)(M), Z # 0,
(3.8) K(Z) - ColA(Z)| > 0.

When n = 1, (3.6) is equivalent to (3.8) since R|Z|> = 2K(Z) and
Tor(Z,Z) = 2RA(Z).
We obtain the following proposition which implies Corollary

PROPOSITION 3.3. If (M?"*1.0) is a strictly pseudohermitian C-convex
real hypersurface in a Kdhler manifold (X,w) with nonnegative holomorphic
sectional curvature. Then M has %-positive holomorphic sectional curvature.
In particular, if n = 1 and M3 is compact, then there is a real parameter

A > 0 such that the (adapted) Riemannian metric
(3.9) g =di+ 212026
has positive Riemannian scalar curvature.

Proof. If X has nonnegative holomorphic sectional curvature K > 0,
then from Theorem we deduce that for |Z| =1,

K(2) > }HP = §|A(2)] > 0,

and hence (M, 0) is %—positive. Observe that the inequality is strict since M
is supposed to be strictly pseudohermitian C-convex. When n = 1, it follows
that (M, 6) is 3-positive in the sense of [2] and hence the corollary follows
from [2, Theorem 1.1]. m
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Proof of Corollary m Let w = iaj,;dzj AdzF. Then K =0 and 0 = /*w.
On the other hand, the squared mean curvature |H|? can be easily computed
(see [14]), namely,

1
H|? = i
1] 002

Thus the corollary follows from Theorem [1.2] =

Proof of Corollary[1-5 From Corollary [[.4] we find that
R=2K(Z) > 80|72 > 0.

Thus, we can apply (2.1)) to deduce that A () > %minM |00|~2 and com-
plete the proof. m

REMARK 3.4. Consider the Reinhardt real hypersurface in C? given by
M, := {(z,w) € C*: (log|z|)* + (log |w|)* = €}, €>0.

This example (and its general dimension version) has been studied in vari-
ous papers; see, e.g., [12] and the references therein. There exists a unique
pseudohermitian structure 6, on M, such that (M,,0.) is locally isomorphic
to (E,0g) (with n = 1), i.e., there exists a local CR diffeomorphism ¢ in
a neighborhood of each point p € M, into F such that 8. = ¢*0g. Thus,
local considerations on M, and E are the same. Thus, on (M, 0.), we have
R = |Ay1| = 1/2 and M, is Cy-positive for any Cy < 1/2. Note that M,
is diffeomorphic to T? and hence does not support any positive scalar cur-
vature Riemannian metric by the well-known theorem of Schoen—Yau [13]
and Gromov-Lawson [6]. Thus, the threshold 1/2 for Cp in the aforemen-
tioned theorem of Cao, Chang, and Chen [2] is sharp: The theorem cannot
be extended to the case of Cy-positivity with Cp < 1/2.

4. An example: Brieskorn manifolds. The purpose of this section is
to present some examples of semi-isometrically immersed CR manifolds in a
complex euclidean space and in a Ké&hler manifold of nonpositive holomor-
phic sectional curvature. They are the CR links of the well-known Brieskorn—
Pham singularities, the Brieskorn manifolds, which have been studied in the
literature from many aspects. In several complex variables and CR geometry,
it was studied by, e.g., Ebenfelt, Huang, and Zaitsev [5] who showed that
to certain extent the local CR geometry of a CR link (of a possibly more
general isolated singularity) determines the local complex structure of the
singularity; see [5] and the references therein. These examples show that the
nonnegativity condition of K in Corollary 1.3 is necessary. We also give an
explicit formula for their Tanaka—Webster holomorphic sectional curvature.
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A Brieskorn manifold is the CR link of a Brieskorn—Pham variety defined
by p = 0 where

N

o,

(4.1) (20,215 -+, 2N) .:szJ
=0

and a;’s are integers, a; > 2. These manifolds were also analyzed by
Tanaka [16] as examples of “normal” CR manifolds.

The variety V := p~1(0) has an isolated singularity at the origin. Put

d=lem{a;: 5=0,1,...,N}, w;=d/a;.
Then p is a weighted homogeneous polynomial with weights (wg, w1, ...;d),
that is,
P20, A% 21, AN 2n) = Ap(20, 21, - . ., 2N)-

The link of V' at the origin is a Brieskorn manifold M(r) := V N {|z|?> = 7},
which is strictly pseudoconvex. In fact, if ¢ is |z|? restricted to V, then away
from the origin, ¢ is a strictly plurisubharmonic defining function for M (r)
in V' (cf. [16]).

Let

(4.2) 0 .=." (;ij_l(zjdéj — Zdej)).
J

Then 6 is a pseudohermitian structure on M(r) (see [16]). Let CVT! be
equipped with the Kéahler metric with the symplectic form

(4.3) w = ZZ wj_ldzj A dZj
J
whose primitives include

~ _ o
0 := B ij Y(zjdz; — zjdz;)).
J
Thus, 0 = %0 and
do = " w.
That is, (M(r),0) is semi-isometrically immersed (as a real codimension 3
submanifold) in (CN*1 w).
Let T denote the vector field generating the S'-action induced by the

C*-action on V. Thus,

al ) )
7=0
Then T is the Reeb field associated to #. Since the S'-action which T' gen-

erates is holomorphic, 6 has vanishing pseudohermitian torsion [16] [18]. We
obtain
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PROPOSITION 4.1. The immersion v: (M,0) — (V, (5" )*w) is a semi-
isometric totally umbilical CR immersion.

This follows from the fact that 7" is holomorphic (via [I6] and [18]) and
the relation between the torsion and the second fundamental form in (2.10)).
We leave the details to the readers.

REMARK 4.2. By the well-known results of Gromov—Lawson [6] and Mil-
nor [10] (see also [11]), we can find among Brieskorn manifolds many exam-
ples of pseudohermitian C-convex real hypersurfaces in Kéhler surfaces of
negative holomorphic sectional curvature admitting no positive scalar Rie-
mannian metrics. This shows that the nonnegativity of K in Corollary
is necessary.

Explicit computations of the (Tanaka—Webster) scalar, Ricci, as well as
the full curvature tensor have been done only for a few examples, see e.g.,
[9. 3, [14]. Proposition below gives another one: We use the Gauss equa-
tions in Proposition to compute the holomorphic sectional curvature of
a Brieskorn manifold.

PROPOSITION 4.3. The Tanaka—Webster holomorphic sectional curvature
of the Brieskorn CR manifold (M(r), ) is given by

N N
1 La
(15)  K(2)= Y wilsl — s> anlae — 02224
2 R
where Z = Z*0), belongs to TWO) (M) and has unit length if and only if

N N N
ZakazZ’“_l =0, Z ZFz. =0, and Zwlzl|Z”“|2
k=0 k=0 k=0

Our computation below is similar to that of Vitter [I7] who computed
curvatures of a general complex hypersurface. In fact, we shall use the fol-
lowing result.

PROPOSITION 4.4 (Vitter [17]). If Z and W are unit (1,0)-vectors tan-
gent to the nonsingular locus of V, Z = Z10; and W = WJ0;, then the
holomorphic bisectional curvature is

N N
Z]Wk

(4.6) B(Z,W)

sz

Proof. We reproduce Vitter’s proof [17] for completeness. This is also
helpful since we also need a formula for the second fundamental form of the
immersion LV V' — C" in the proof for our later purpose.
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For any X = X79; € T1O(V) (¢ € V), we must have

N ap N op
— E inz w._l)gj<w»)_
) Z J J .
= 0z = 0z
Therefore, if

‘- z ()

then N :=¢/[|€]] is a (1, 0)—normal vector of V.
For any (0, 1)-vector W that is tangent to V', we have

vy = (5e7) = (7 () )&+ (e ) 7o

Since 0/0z; is parallel with respect to V, we have

Virt = Z( <“’Jaz>>azj Z@W‘”J(azaz;));'

Therefore, for any ¥ = YJ(‘% we have

If Y is tangent to V, then by the Weingarten formula, we have
(NI (W,Y)) = —(VipN, Y)

el 22" a2
Thus,
N 1 A k 8217 j
A7 1" (W. ¥ ( W< )Y”)N,
an - =gl L 2 (50
where
N 8p 2
2 _ Nt
el = 3wy 2
j=0 J

Thus, the Gauss equation for Kéhler submanifolds together with (4.7) yields

the desired formula (4.6) immediately. m



168 D. N. SON

Proof of Proposition [{.3. When p is the Brieskorn-Pham polynomial
given in (4.1)) we have

N
117 = d ) ajlz 2,
j=0

and, by Vitter’s formula above, the holomorphic bisectional curvature of the
Brieskorn—Pham variety is

a 2 7k k
BZW) = ||s||2‘za’“ S

Consider the CR immersion ¢¥,;: M — V. As (M, ) has vanishing tor-
sion, we have

0= (rZ,W) = —(H, L} (Z,W)),

and since the normal bundle N0 (M) in T(-9(V) has 1-dimensional fibers
while H # 0, we have

(4.8) 0y, (Z,W)=0, VYZ,W eT®)().

If H is the (1,0)-mean curvature vector of the immersion (S and T is the
Reeb field, then by [14], ¢7'= H — H and thus (by (4.4))

al )
7=0

The restriction of H to M is the (1,0)-mean curvature vector of the immer-
sion LM Then

B(Z,W)=3B(Z,W)+ H*(1+ (Z,W)?).

From this, equation (4.9), and the formula of Vitter (4.6) we obtain the
formula for the holomorphic bisectional curvature:

1

B(Z,W)=5(1+(Z, % ij\zj\ Zak a — 1)z~ QZka

21| IIQ‘
which reduces to the desu“ed formula ) for the holomorphic sectional
curvature by setting Z =W. u

We conclude this section by pointing out a quite interesting property of
the Brieskorn manifolds, the nowhere CR umbilicity. On a Levi-nondegerate
CR manifold of dimension at least 5 a point p is said to be CR umbilical if the
Chern—Moser—Weyl tensor (i.e., the completely tracefree part of the Tanaka—
Webster curvature tensor Raﬁw [18]) with respect to some (equivalently, to
any) pseudohermitian structure 6 vanishes at p. The Chern-Moser—Weyl ten-
sor and CR umbilicality are important biholomorphic invariants. Compact
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nowhere CR umbilical CR manifolds are interesting as they admit a distin-
guished contact form, the principal contact form, with respect to which the
Chern—-Moser—Weyl tensor has unit norm. The first known examples of such
manifolds were given by Webster [19]. They are the generic real ellipsoids
in complex space. Webster also proved that the corresponding Reeb fields
are “completely integrable.” A principal contact form, if it exists, is useful
for studying CR (or biholomorphic) equivalences of CR manifolds (or the
complex domains they bound); see, e.g., [12 Section 5|.

The Brieskorn manifolds give a wealth of examples of nowhere CR um-
bilical manifolds.

COROLLARY 4.5. Let a = (ag,a1,...,an), N >3, and let M(r) be the
Brieskorn manifold. If ap, > 2 for all k, then the Chern—Moser—Weyl tensor
of M never vanishes and hence M admits a unique principal contact form.

Proof. Since (M, 0) is totally umbilical in V', from Proposition we
have

(4.10) tF IS, = tF IS |y

where tf denotes the trace-free part of a tensor. Equation (4.7)) above shows

that tf H%N] um never vanishes on M if ap > 2 for all k. Thus the assertion
follows from [I4, Proposition 3.3|. =
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