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1. Introduction

The study of proper holomorphic maps between balls goes back to Poincaré [41] and 
Alexander [2] who showed that the proper holomorphic self-maps of a ball in CN , N � 2, 
are precisely the automorphisms which have explicit parametrizations. When the target 
is a ball of higher dimension, the discovery of inner functions implies that there are proper 
holomorphic maps between balls that do not extend to any boundary point [1,17,35,36]. 
On the other hand, by a well-known result of Forstnerič [15], proper holomorphic maps 
between balls, which extend sufficiently smooth to a boundary point, extend to rational 
maps. Moreover, by Cima–Suffridge [8] the rational maps have no poles on the boundary 
and hence induce global CR maps between spheres.

There is an interesting phenomenon for CR maps of spheres (i.e. sphere maps) de-
pending on the size of the codimension (i.e. the difference of the CR dimensions of the 
source and target sphere). When the codimension is “low,” the maps are “rigid,” which 
means that there is only the linear map up to composition with automorphisms, see 
[45,13,20]. When the codimension is not too large, the sphere maps may be completely 
classified [12,13,22–24]. In case there is no restriction on the codimension, the collection 
of sphere maps is known to be huge [9,18]. A particular interesting case is when the 
source is S3 ⊂ C2. In this case, the smooth CR maps into S5 ⊂ C3 have been classified 
by Faran [12] as four “spherical equivalence” classes of maps. See also [7,26,42] for dif-
ferent proofs. However, a classification of the maps from S3 into S7 is only available for 
monomial maps [9].

Besides the study of proper holomorphic maps of balls, there is a large literature 
devoted to the study of proper holomorphic maps between various models such as the 
complex ellipsoids, Reinhardt domains, and the classical domains. In particular, there 
are many works devoted to the study of proper holomorphic maps as well as isometric 
holomorphic embeddings with respect to the Bergman metrics from one bounded sym-
metric domain into another by Mok, Ng, Kim–Zaitsev, Xiao, Yuan and others, see, e.g. 
[40,28,47,46]. In [47], Xiao–Yuan give complete classifications of proper maps from Bn

into DIV
m ⊂ Cm (the Cartan’s classical domain of type IV of m dimension) in the “low” 

codimensional case (i.e., 4 � n � m − 1 � 2n − 4) and for the holomorphic isometries 
from Bn into DIV

n+1 ⊂ Cn+1 for all n � 2. When the codimension is higher, there are 
many more explicit examples of proper holomorphic maps given in [47]. However, in the 
case n = 2 and m = 3, only two equivalence classes of proper holomorphic maps were 
known (and they are all isometries), yet the classification problem was left open in these 
particular dimensions. We refer the reader to, e.g., [38–40,47] and their references for 
more detailed information.

In this paper, we study local CR maps from S3 into the well-known tube over the 
future light cone T of real dimension 5 which has been of interest in many papers, 
e.g., [11,27]. This is an everywhere Levi-degenerate 2-nondegenerate CR manifold (cf. 
[11, Example 4.2.1]) which is homogeneous and has a “large” stability group; see, e.g., 
[27,14]. Moreover, T is locally CR equivalent to the smooth boundary part R of DIV

3
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and our study provides a complete classification of proper holomorphic maps from B2

into DIV
3 which extend smoothly to a boundary point.

Definition 1.1. Let M and M ′ be CR manifolds and let H : (M, p) → M ′, H̃ : (M, p̃) →
M ′ be germs of smooth CR maps at p and p̃, respectively. We say that H and H̃ are 
equivalent if there exist germs of local CR diffeomorphisms γ : (M, p) → (M, p̃) and 
ψ : (M ′, H̃(p̃)) → (M ′, H(p)), such that

H = ψ ◦ H̃ ◦ γ−1.

We say that CR maps are equivalent if they represent two equivalent germs at some 
interior points in their domains of definition.

In our main theorem below, we classify the germs of CR maps from S3 into T as five 
equivalence classes of map germs. Their representing maps have simple formulas when 
being expressed in the Heisenberg model H3 :=

{
(z, w) ∈ C2 : Imw = |z|2

}
for S3 and 

the rational model X for the tube given explicitly as follows.

X :=
{

(z, w) ∈ C2 : v = |z|2 + Re(z2ζ̄)
1 − |ζ|2 , |ζ|2 < 1

}
, w = u + iv.

An explicit local equivalence of X and T is given by Fels and Kaup in [14, Proposi-
tion 4.16].

Theorem 1.2. Let U be an open subset of H3 and H : U → X a smooth CR map. Then 
the following hold:

(a) If H is CR transversal at some point p ∈ U , then H is CR transversal on U , the 
germs (H, q), q ∈ U , are mutually equivalent and are equivalent to exactly one of the 
following four pairwise inequivalent germs at the origin:

(i) �(z, w) = (z, 0, w),

(ii) r1(z, w) =
(
z(1 + iw)
1 − w2 ,

2z2

1 − w2 ,
w

1 − w2

)
,

(iii) r−1(z, w) =
(
z(1 − iw)
1 − w2 ,

−2z2

1 − w2 ,
w

1 − w2

)
,

(iv) ι(z, w) = (2z, 2w, 2w)
/(

1 +
√

1 − 4w2 − 4iz2
)
.

Consequently, H extends as an algebraic map from C2 to C3 sending H3 into X .
(b) If H is nowhere CR transversal, then for each q, the germ (H, q) is equivalent to the 

germ at the origin of a map tq : (z, w) �→ (0, φq(z, w), 0) for a smooth CR function 
φq defined in a neighborhood of the origin.
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Remark 1. The smoothness assumption in Theorem 1.2 can be weakened to C2-
smoothness by results of Kossovskiy–Lamel–Xiao [30] or Lamel–Mir [32]. Regularity of 
CR maps into the tube over the future light cone has been studied in [37,46,16]. More-
over, by Lamel–Mir [33], formal CR transversal holomorphic maps sending H3 into X
must be convergent.

As briefly mentioned above, this theorem implies a complete classification of proper 
holomorphic maps from B2 to the classical domain DIV

3 that extend smoothly to some 
boundary point. Recall [5, §V] that the Cartan’s classical domain of type IV in dimension 
m, denoted by DIV

m , is the domain of m-dimensional vectors

Z = (z1, z2, . . . , zm) ∈ Cm

satisfying the inequalities

1 − 2ZZ
t +

∣∣ZZt
∣∣2 > 0,

∣∣ZZt
∣∣ < 1,

where Zt is the m × 1 transpose of Z. This domain is also called the Lie ball and 
the complex sphere in the literature. This domain is homogeneous: the global automor-
phism group Aut(DIV

3 ) acts transitively on it. We say that two proper holomorphic maps 
H, H̃ : B2 → DIV

3 are equivalent if there exist ψ ∈ Aut(DIV
3 ) and γ ∈ Aut(B2) such that 

H̃ := ψ ◦H ◦ γ−1. Then we obtain a classification of proper holomorphic maps from B2

to DIV
3 as follows.

Corollary 1.3. Let H : B2 → DIV
3 be a proper holomorphic map which extends smoothly 

to some boundary point p ∈ ∂B2. Then H is equivalent to exactly one of the following 
four pairwise inequivalent maps:

(i) R0(z, w) =
(

z√
2
,
2w2 + 2w − z2

4(w + 1) ,
i
(
2w2 + 2w + z2)

4(w + 1)

)
,

(ii) P1(z, w) =
(
zw,

z2 − w2

2 ,
i(z2 + w2)

2

)
,

(iii) P−1(z, w) =
(
z,

w2

2 ,
iw2

2

)
,

(iv) I(z, w) =
(
z, w, 1 −

√
1 − z2 − w2

) /√
2.

Remark 2. The maps R0 and I were known earlier in the classification of isometric 
embeddings, studied in, e.g., [6,44], by methods that are very different from ours. They 
also appeared in [47] which studies the rigidity of transversal holomorphic maps sending 
a piece of the sphere into the smooth boundary part of a type IV domain in higher 
dimension. They are essentially the only isometric embeddings (up to a normalizing 
constant) of the respective Bergman metrics on B2 and DIV

3 . The quadratic polynomial 
maps P±1 are not isometric and provide counterexamples to Conjecture 2.9 in [47] of 



M. Reiter, D.N. Son / Advances in Mathematics 410 (2022) 108743 5
Xiao and Yuan in the case the source has dimension n = 2 (the case n = 3 and the 
case of C1-extendability are still open). In fact, there is a 1-parameter smooth family 
of rational proper maps Rα, α ∈ R, such that Rα ∼ P1 for α > 0 and Rα ∼ P−1 for 
α < 0, yet R0 is not equivalent to Rα for α 	= 0. In essence, the map R0 is not “locally 
rigid” (see [10] for a recent discussion on the local rigidity of CR maps). This exhibits 
an important difference of our setting from the case n � 4 and the case of isometries 
treated in [47,44,6] in which the rigidity holds.

It is immediate to see that these four maps are pairwise inequivalent. Indeed, R0
and I (which is irrational in all representations of the target considered in this paper) 
have singularities on the sphere, the image of S3 via P1 lies entirely in the smooth part 
R ⊂ ∂DIV

3 , while P−1 sends the circle {(eit, 0)} ⊂ S3 into the singular part of ∂DIV
3 and 

sends S3 \ {(eit, 0)} transversally into R. Hence, the inequivalences are evident.
Our proof of Corollary 1.3 is independent from that of the classification of proper 

holomorphic maps and isometric embeddings in [6,44,47].

Remark 3. Corollary 1.3 is analogous to Faran’s well-known classification of maps from 
B2 to B3 as a list of four equivalence classes of maps [12] (see also [42,26]). We point out, 
however, that there is a difference when considering local equivalences of map germs. For 
each map H ∈ {R0, P1, P−1, I} and each p, p′ ∈ S3 such that H(p), H(p′) ∈ R, the germs 
(H, p) and (H, p′) are equivalent. In contrast, the sphere map (z, w) �→ (z, zw, w2) from 
B2 to B3 represents inequivalent germs when the base point p varies on and off the circle 
of “umbilical points” {(0, eiθ) ∈ S3 : t ∈ R}. The sphere map (z, w) �→ (z3, 

√
3zw, w3)

also exhibits a similar phenomenon, see [42] and [34, Table 1].
It is interesting to point out, that unlike in the sphere case, where the only everywhere 

degenerate map (in the sense of [31]) is the linear map, in the setting of Theorem 1.2 all 
transversal CR maps are 2-nondegenerate.

Remark 4. There is a convenient way to construct proper holomorphic maps from a ball 
into a type IV domain of certain dimension as first noticed in [47]. In essence, it relies 
on an equation of the form

2
m∑
j=1

|hj |2 −

∣∣∣∣∣∣
m∑
j=1

h2
j

∣∣∣∣∣∣
2

=
m′∑
j=1

|fj |2, (1.1)

where H = (h1, h2, . . . , hm) and F = (f1, f2, . . . , fm′) are two holomorphic maps defined 
on some relevant open set of Cn. If H maps S2n−1 into ∂DIV

m , then F maps S2n−1

into S2m′+1 and vice versa, if F maps S2n−1 into S2m′+1, then H maps S2n−1 into 
the real variety {
DIV

m
= 0} which contains ∂DIV

m . Equation (1.1) implies that H|S2n+1

and F |S2n+1 have the same Ahlfors tensor (defined in Section 2). If we take H = P1, 
then (1.1) holds for F (z, w) = (z2, 

√
2zw, w2), which maps S3 into S5. Both maps have 

Ahlfors tensor equal to 1/2 (when evaluated on an appropriate frame). If H = P−1, then 
there is no map F : S3 → S5 such that (1.1) holds, since P−1 has a negative Ahlfors 
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tensor, cf. [47, Example 2.8] and the proof of Corollary 1.3, which can never be satisfied 
by any sphere map, see [34].

Each of the isometric embeddings R0 and I restricts to a CR map on an open dense 
subset of S3 having the property that a certain coefficient in its partial normal form 
(given below in (3.1)) vanishes. In this case we say that the map has vanishing geometric 
rank at the centered point. The notion of geometric rank in our present setting is similar 
to that of sphere maps, first used by Huang [20], see also [21], and has been used widely 
since then in the study of sphere maps. It also appears recently in [25] as a boundary 
characterization for isometric embeddings into indefinite hyperbolic space. We define 
this invariant notion for CR transversal maps into the tube over the future light cone 
precisely in Definition 3.2. By inspecting the special case of vanishing geometric rank 
in the proof of Theorem 1.2, we can observe a phenomenon that is similar to the main 
result in [25].

Corollary 1.4. Let H : B2 → DIV
3 be a proper holomorphic map. If H extends smoothly 

to a neighborhood of a point p ∈ S3 and has vanishing geometric rank at p, then H is a 
holomorphic isometry (with respect to the Bergman metrics). Conversely, each isometric 
embedding from B2 into DIV

3 extends to a real-analytic CR map from an open dense 
proper subset of the sphere S3 to the boundary of ∂DIV

3 with vanishing geometric rank at 
every point and is everywhere CR transversal on its domain.

We conclude this introduction by describing our approach in the proof of Theorem 1.2
and the main difficulties we need to overcome. Similarly to, e.g. [42,47], we analyze the 
“mapping equation” for the components of a map H which expresses the fact that H
sends H3 into X . But there are differences to the positive but “low” codimension case, as 
treated in [47], when “rigidity” holds, i.e., when there are only “few” equivalence classes 
of maps: An essential ingredient for the rigidity is Huang’s lemma [20] and the fact that 
the maps are all of vanishing “geometric rank”. In our present setting (as well as in the 
case of sphere maps from S3 to S5, cf. [12,42]) Huang’s lemma is not available and the 
rigidity fails. Thus, the solution set in the present setting is expected to be rather “large” 
and we need to solve the mapping equation for an a priori unknown number of (discrete 
or continuous families of) solutions.

To analyze the mapping equation, we first normalize the map (the “unknown”) to a 
specific form, given in (3.1), using explicit formulas for the local CR automorphisms of 
the source and target (Lemma 2.2). In this partial normal form, the mapping equation 
can be viewed as either a system of infinitely many (linear and nonlinear) equations for 
the coefficients of the Taylor series expansions of the components the map (the jets of the 
map at the origin) or a system of infinitely many equations arising from differentiation 
and evaluation along the first Segre variety Σ := {(z, w) ∈ C2 : w = 0} of H3 at the 
origin. By the 2-nondegeneracy of X , the jets of the map of all orders are determined 
once the 4-jet is determined. Such a behavior is also observed in the sphere case, see [42].
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A bulk of the present paper is to identify the 4-jets at the origin that arise from maps 
sending H3 into X . This process involves analyzing the mapping equation and various 
derived ones. It turns out that the 4-jets of the maps can only be fully identified by 
analyzing all equations arising from the Taylor series expansions up to weighted order 16. 
There are examples of maps which satisfy all but three of weight 14 (Example 5.3). This 
shows that considering such high orders is in some sense necessary. Once we determine 
the 4-jets of the maps at the origin, and at the same time, the 2-jets along the first Segre 
variety, we can construct a system of three holomorphic functional equations depending 
on two real parameters whose unique and explicit solutions, as presented in Theorem 1.2, 
are genuine maps sending H3 into X .

The computational complexity also poses some difficulties. To overcome this issue, we 
use the computer algebra system Mathematica when doing some formal differentiations, 
collecting terms in polynomial expressions, and computing determinants of matrices of 
some (relatively small) size. But we want to point out, that the operations and expressions 
involved in the proofs are in principle simple and elementary enough to be checked by 
hand.

The paper is organized as follows: In section 2 we provide the local representations 
of the tube over the future light cone, its automorphisms and an Ahlfors-type tensor, 
which allows us to distinguish equivalence classes of maps. In section 3 we give a partial 
normal form for the maps and introduce the geometric rank in this setting. In section 4
we give the proof of our main result Theorem 1.2 and in section 5 we discuss additional 
examples of maps and provide explicit biholomorphisms to show equivalence to the maps 
listed in Theorem 1.2.

2. Preliminaries

2.1. Models for the tube over the future light cone

Following [14] we would like to describe representations of the tube over the future 
light cone. A model for the three-dimensional space time is the space V of real symmetric 
2 × 2-matrices where the time coordinate is the normalized trace of the matrices. In this 
model, the future cone is

Ω :=
{
v =

(
t + x1 x2
x2 t− x1

)
: v positive definite

}
.

The smooth boundary part of Ω is the future light cone C is given explicitly by

t2 = x2
1 + x2

2, t > 0.

To construct the tube over C, one identifies V ⊕ iV with the space of complex symmetric 
2 × 2-matrices. The tube over the future light cone is given by
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T := C ⊕ iV = {z ∈ V ⊕ iV : det(z + z̄) = 0, Re tr(z + z̄) > 0} .

The tube T is the smooth boundary part of a tube domain with everywhere degenerate 
Levi-form. In fact, it is everywhere 2-nondegenerate as a CR manifold; see [11, Exam-
ple 4.2.1]. It has been studied in many papers [11,27,14]. Our interest in this tube is that 
it is holomorphically homogeneous, i.e., its CR automorphism group acts transitively on 
it, and has quite “large” stability group at each point. Moreover, from Fels–Kaup [14], 
T has a local rational model similar as in the case of the sphere. Namely, at every point 
it is locally CR equivalent to the real hypersurface X near the origin in Cz,ζ,w given by

v = |z|2 + Re(z2ζ̄)
1 − |ζ|2 , w = u + iv.

In fact, the rational map

Φ : (z, ζ, w) �→ 1
1 + ζ

(
z2 − iζw − iw

√
2w√

2w 1 − ζ

)
sends X into T [14, Proposition 4.16] and is locally biholomorphic on a dense set of 
C3. In this model, the automorphism group and the stability group have quite simple 
representations. In this paper, we shall work extensively with this model.

For the tube model, the maps are given as follows.

Theorem 2.1. Let U ⊂ H3 be a connected open set and H : U → T be a smooth CR map. 
Then

(a) If H is CR transversal at some point p ∈ U , then for all q ∈ U , the germs (H, q) are 
mutually equivalent and is equivalent to one of the following germs at the origin:

(i) R0(z, w) =
(
z2 − iw

√
2z√

2z 1

)
,

(ii) R1(z, w) = 1
1 − w2 + 2z2

(
z2 − iw

√
2z(1 + iw)√

2z(1 + iw) 1 − w2 − 2z2

)
,

(iii) R−1(z, w) = 1
1 − w2 − 2z2

(
z2 − iw

√
2z(1 − iw)√

2z(1 − iw) 1 − w2 + 2z2

)
,

(iv) I(z, w) = 1
1 + 2w + ε

(
−i(1 + 2w − ε) 2

√
2z

2
√

2z 1 − 2w + ε

)
, ε :=

√
1 − 4w2 − 4iz2.

(b) If H is nowhere CR transversal, then for each p ∈ U , (H, p) is equivalent to a germ 

at the origin of the form φp(z, w) =
(

0 0
0 ϕp

)
for some smooth CR function ϕp.

It is well-known that T is locally CR equivalent to the smooth boundary part of 
Cartan’s classical domain of type IV. Recall from [5, Section V] that the symmetric 
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domain of type IV of m dimension, denoted by DIV
m , is the domain of m-dimensional 

vectors

Z = (z1, z2, . . . , zm) ∈ Cm

satisfying the conditions

1 − 2ZZ
t +

∣∣ZZt
∣∣2 > 0,

∣∣ZZt
∣∣ < 1,

where Zt is the m ×1 transpose of Z. This domain is also called the Lie ball or the complex 
sphere in the literature. The complex 3-dimensional case (i.e. m = 3) is rather special as 
DIV

3 is also equivalent to the classical domain of type II, denoted by DII
2 , consisting of 

symmetric 2 × 2-matrices Z such that I2×2 − ZZ̄ is positive definite. Explicitly,


DIV
3

= det
(
I2×2 −

(
z1 + iz3 iz2

iz2 z1 − iz3

)
·
(
z̄1 − iz̄3 −iz̄2
−iz̄2 z̄1 + iz̄3

))
while the trace of the matrix in the parenthesis is just 1 − |ZZt|2. The biholomorphisms 
of DIV

3 and DII
2 are well-known, see [19].

2.2. Automorphisms of the tube over the future light cone

The local CR automorphisms of the tube over the future light cone are well-studied. 
They are the restrictions of birational but not necessarily biholomorphic transformations 
of C3; a local CR equivalence of T does not necessarily extend to a global CR equiv-
alence [27]. By homogeneity, the local CR equivalences of T are determined once the 
automorphism group Aut(T , p) of the germs at an arbitrary point p is determined. In 
fact, Aut(T , p) is a solvable real Lie group of dimension 5 (isomorphic to the stability 
group of a point on a sphere in C2 [4, Theorem 5]). For our purpose, we shall describe this 
group explicitly in the local rational model of Fels–Kaup [14]. The result of Fels–Kaup 
is presented in [29] by writing the Lie algebra g as

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2.

The stability group Gc
0 generated by the component

gc0 := span
{
z
∂

∂z
+ 2w ∂

∂w
, iz

∂

∂z
+ 2iζ ∂

∂ζ

}
is parametrized by λ > 0 and ϕ ∈ R as follows

(z, ζ, w) �→
(
λeiϕz, e2iϕζ, λ2w

)
.

The component g2 is
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g2 = span
{
zw

∂

∂z
− iz2 ∂

∂ζ
+ w2 ∂

∂w

}
.

Integrating yields a 1-parameter subgroup and we get

(z, ζ, w) �→
(
z, ζ − swζ − isz2, w

)
/(1 − sw), s ∈ R.

The component g1 is given by

g1 = span
{

(z2 + iw(ζ + 1)) ∂

∂z
+ 2z(ζ + 1) ∂

∂ζ
+ 2zw ∂

∂w
,

(iz2 − w(ζ − 1)) ∂

∂z
+ 2iz(ζ − 1) ∂

∂ζ
+ 2izw ∂

∂w

}
.

Integrating the first vector field, we obtain

(z, ζ, w) �→
(
z(1 − tz) + it(1 + ζ)w,−δ1 + ζ + 1, w

)
/δ1, δ1 = (1 − tz)2 − i(ζ + 1)t2w.

Integrating the second vector field, we get

(z, ζ, w) �→
(
z(1 − irz) − r(ζ − 1)w, δ2 + ζ − 1, w

)/
δ2, δ2 = (1 − irz)2 + i(ζ − 1)r2w.

Composing the automorphisms obtained above, we have

Lemma 2.2 (Stability group). Let a ∈ C, t ∈ R, u ∈ C, |u| = 1, λ > 0 and

δ = 1 − 2iāz − (t + i|a|2)w + iā2(wζ + iz2).

Then the stability group Aut(X , 0) is the 5 dimensional group consisting of the automor-
phisms

ψa,t,u,λ :

⎧⎪⎪⎨⎪⎪⎩
z̃ = λu

(
z + aw − ā(wζ + iz2)

)
δ−1

w̃ = λ2wδ−1

ζ̃ = u2 (ζ − 2iaz − ia2w − (t− i|a|2)(wζ + iz2)
)
δ−1

(2.1)

Infinitesimal automorphisms, which do not vanish at the origin, give rise to automor-
phisms moving points. We provide them in the following:

The vector field ∂/∂w spanning g−2 integrates to the 1-parameter family

(z, ζ, w) �→ (z, ζ, w + s) for s ∈ R. (2.2)

The component g−1 is given by

g−1 = span
{

(1 − ζ) ∂ + 2iz ∂
, i(1 + ζ) ∂ + 2z ∂

}
,

∂z ∂w ∂z ∂w
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whose vector fields integrate to

(z, ζ, w) �→ (z + t′(1 − ζ), ζ, w + 2it′z + it′ 2(1 − ζ)), t′ ∈ R,

(z, ζ, w) �→ (z + is′(1 + ζ), ζ, w + 2s′z + is′ 2(1 + ζ)), s′ ∈ R.

Combining the three above automorphisms gives the following 3-parameter family which 
generates the Lie group corresponding to g−1 ⊕ g−2,

τb,r : (z, ζ, w) �→ (z + b− b̄ζ, ζ, w + r + i|b|2 + 2ib̄z + ib̄2/2 − ib2/2 − ib̄2ζ), (2.3)

for b ∈ C and r ∈ R, which maps 0 to (b, 0, r + i|b|2 + ib̄2/2 − ib2/2).
The component gs0 is given by

gs0 = span
{
−zζ

∂

∂z
+ (1 − ζ2) ∂

∂ζ
+ iz2 ∂

∂w
, izζ

∂

∂z
+ i(1 + ζ2) ∂

∂ζ
+ z2 ∂

∂w

}
.

If we write

ε1 = 1 + λ′ + (λ′ − 1)ζ, λ′ > 0,

then the first vector field integrates to

(z, ζ, w) �→
(
2
√
λ′z, ε′1 + 2(ζ − 1), (λ′ + 1)w + (λ′ − 1)(wζ + iz2)

)
/ε1. (2.4)

If we write

ε2 = 1 + μ′ − i(μ′ − 1)ζ, μ′ > 0,

then the second vector field integrates to

(z, ζ, w) �→
(
2
√

μ′z, i(μ′ − 1 − i(μ′ + 1)ζ), (μ′ + 1)w − i(μ′ − 1)(wζ + iz2)
)
/ε2.

If we compose the two 1-parameter families of automorphisms and write,

c′ = 1 + i(μ′ + λ′) + μ′λ′, d′ = 1 + i(μ′ − λ′) − μ′λ′, γ′ = c′ − d′ζ,

we obtain the following 2-parameter family of automorphisms

ψ : (z, ζ, w) �→
(
2
√
μ′λ′(1 + i)z, i(c̄′ζ − d̄′), c′w − d′(wζ + iz2)

)
/γ′,

which sends 0 to (0, −id̄′/c′, 0).
As an application of these explicit representations of the transitive automorphisms 

of X , we explicitly show in Example 5.2 below, that the rational map R : B2 → DIV
3
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obtained in [47, Theorem 1.4] corresponds to the linear map �, listed in Theorem 1.2, as 
a map from H3 into X .

To deduce Corollary 1.3 from Theorem 1.2, we shall use the local equivalence of the 
rational model X and the smooth boundary part R of DIV

3 together with a well-known 
fact that (in contrast with the local CR equivalences of the rational model) each local 
CR equivalence of R extends to a birational transformation of C3 that restricts to 
automorphisms of DIV

3 [14, Section 6], [27]. In the case of the sphere and Heisenberg 
hypersurface, this extension phenomenon has been known since the works of Poincaré, 
Tanaka, and Alexander, cf. [41,2]. For general classical domains of rank � 2, the same 
result was established by Mok–Ng [40].

Theorem 2.3. Let p ∈ R be a point in the smooth boundary part R of DIV
3 and let U be 

a neighborhood of p in R. If H : U → R is a local CR diffeomorphism, then there exists 
a rational map H̃ such that H̃|DIV

3
is an isometry of DIV

3 with respect to the Bergman 

metric and H = H̃|U .

We should also mention a well-known theorem of Tumanov–Khenkin [43] which gives 
a similar conclusion when the smooth boundary part is replaced by the Shilov boundary, 
the “skeleton” in the terminology of [43], of the domain. For the sake of completeness, 
we give an elementary proof that is based on Lemma 2.2 for the special case of DIV

3 .

Proof. Since the automorphisms of DIV
3 act transitively on R, we may assume that 

H(p) = p = (0, 12 , 
i
2 ). The rational map Φ

Φ(z, ζ, w) =
(

2iz
2i + w

,
2i− w − 2iζ − (wζ + iz2)

2(2i + w) ,
i
(
2i− w + 2iζ + (wζ + iz2)

)
2(2i + w)

)
(2.5)

sends a neighborhood V of the origin biholomorphically onto some neighborhood U of 
p with Φ(0, 0, 0) = p and locally X into R. Then γ := Φ−1 ◦H ◦ Φ defines a local CR 
diffeomorphism of X fixing the origin, i.e., γ represents an element of the stability group 
Aut(X , 0) and has the form (2.1) for an appropriate quadruple of parameters a, u, t, and 
λ. Therefore, H = Φ ◦γ ◦Φ−1 agrees with a rational automorphism (in fact, an isometry) 
of DIV

3 as can be checked directly. Indeed, explicitly one can take

Φ−1(z1, z2, z3) =
(

2z1

1 + z2 − iz3
, −z2 + iz3 + z2

1 + z2
2 + z2

3
1 + z2 − iz3

,
2i(1 − z2 + iz3)

1 + z2 − iz3

)
(2.6)

Then Φ ◦ γ ◦ Φ−1 is a second degree rational mapping of the form

H̃ = Φ ◦ γ ◦ Φ−1 =
(
ψ1

Δ ,
ψ2

2Δ ,
ψ3

2Δ

)
(2.7)

where the components of the map are
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ψ1 = 2uλ(ia + z1 + 2z2 Im(a) − z3 Re(a) − iā(z2
1 + z2

2 + z2
3)),

ψ2 = 1 + 2|a|2 − λ2 − 2it− 2a2u2 + 4iz1
(
au2 − ā

)
+ z2

(
u2 (2a2 − 2|a|2 + λ2 − 2it + 1

)
+ 1 − 2|a|2 + λ2 + 2ā2 + 2it

)
− iz3

(
u2 (2a2 + 2|a|2 − λ2 + 2it− 1

)
+ 1 − 2|a|2 + λ2 − 2ā2 + 2it

)
+

(
u2 (1 + 2|a|2 − λ2 + 2it

)
− 2ā2) (z2

1 + z2
2 + z2

3),

ψ3 = i
(
1 + 2|a|2 − λ2 − 2it + 2a2u2 − 4iz1(au2 + ā)

+ z2(1 − 2|a|2 + λ2 + 2ā2 + 2it− u2(1 − 2|a|2 + λ2 + 2a2 − 2it))

− iz3
(
u2 (1 − 2|a|2 + λ2 − 2a2 − 2it

)
+ 1 − 2|a|2 + λ2 − 2ā2 + 2it

)
−

(
u2 (1 + 2|a|2 − λ2 + 2it + 1

)
+ 2ā2) (z2

1 + z2
2 + z2

3)
)
,

and the common denominator is

Δ = (1 + 2|a|2 + λ2 − 2it) − 2ā2(z2
1 + z2

2 + z2
3) − 4iāz1

+(1 − 2|a|2 − λ2 + 2ā2 + 2it)z2 − i(1 − 2|a|2 − λ2 − 2ā2 + 2it)z3.

Equation (2.7) gives the most general parametric formula for the CR automorphisms of 
the germ (R, p).

To show that the rational map H̃ restricts to an automorphism of DIV
3 , it suffices to 

show that Δ does not vanish on DIV
3 . If we write

W =
(

−2ia
1 + 2|a|2 + λ2 + 2it ,

λ2 − 1 + 2|a|2 − 2a2 + 2it
2(1 + 2|a|2 + λ2 + 2it) ,

i(λ2 − 1 + 2|a|2 + 2a2 + 2it)
2(1 + 2|a|2 + λ2 + 2it)

)

then W ∈ DIV
3 , H̃(W ) = (0, 0, 0) and furthermore

Δ = (1 + 2|a|2 + λ2 − 2it)
(
1 − 2W t

Z + (W tW ) (ZtZ)
)
.

But from the explicit formula for the Bergman kernel KDIV
3

(Z, W ) of DIV
3 (see [19]), we 

have

KDIV
3

(Z,W ) = volume(DIV
3 )−1

(
Δ

1 + 2|a|2 + λ2 − 2it

)−3

and the non-vanishing of Δ on DIV
3 is equivalent to the well-known fact that DIV

3 , being 
a homogeneous complete circular domain, has non-vanishing Bergman kernel (i.e., is a 
Lu Qi-Keng domain). �
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2.3. An invariant for CR maps into the tube over the future light cone

In this section, we analyze a tensor attached to each transversal CR map into the 
tube over the future light cone or into R that is similar to the CR Ahlfors derivative of 
CR immersions studied recently by Lamel and the second author. We refer the reader 
to [34] for some details about the origin, motivation, and a general differential geometric 
construction of the CR Ahlfors tensor for CR immersions in the strictly pseudoconvex 
setting. In our current setting, the construction is rather ad-hoc, yet the resulting tensor 
is still useful for our purpose. Namely, it has an invariant property and gives an easy 
way to distinguish inequivalent maps into the tube over the future light cone. Indeed, 
we shall use it in the proof of Corollary 1.3.

Let M ⊂ Cn+1 be a real hypersurface defined by 
M = 0 and H : M → R a CR 
transversal CR map extending holomorphically to a neighborhood of M . By the CR 
transversality, there is a real-valued smooth function v such that


DIV
m

◦H = ±ev
M , 
DIV
m

:= 1 − 2ZZ
t + |ZZt|2.

Without loss of generality, we assume that the positive sign occurs. If M is a sphere we 
take 
M := 1 − |z|2 and fix the defining function of the target R to be 
DIV

m
. Then we 

define the Ahlfors tensor A(H) by

A(H) = vZZ

∣∣
T (1,0)M×T (0,1)M

, (2.8)

where vZZ is the complex Hessian of v. For any ψ ∈ Aut(DIV
m ), we have


DIV
m

◦ ψ = |q|2
DIV
m

for some rational function q having no pole and zero on R. Thus, arguing as in [34], we 
can see that A(H) is invariant with respect to composing with automorphisms of DIV

m , 
i.e., on the smooth boundary part R,

A(H) = A(ψ ◦H), ∀ ψ ∈ Aut(DIV
m ). (2.9)

In fact, if H̃ := ψ ◦H and 
DIV
m

◦ H̃ = eṽ
M , then


DIV
m

◦ H̃ =
(

DIV

m
◦ ψ

)
◦H =

(
|q|2
DIV

m

)
◦H = |q ◦H|2

(

DIV

m
◦H

)
= |q ◦H|2ev
M ,

and, consequently,

ṽ = v + log |q ◦H|2.

Since q has no pole nor zero on R, log |q ◦H|2, being the logarithm of the modulus of a 
non-vanishing holomorphic function, has vanishing complex Hessian on a neighborhood 
of the sphere and hence (2.9) follows.
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Similarly, on the sphere,

A(H ◦ γ−1) = |q̃|2A(H)

holds for every automorphism γ of the ball with a non-vanishing CR function q̃. Conse-
quently, the vanishing of the Ahlfors tensor is invariant with respect to composing and 
pre-composing with automorphisms of the source and target. These invariant properties 
do not hold for general defining functions of the source and target.

Let {Zα} be a local frame for T (1,0)(M), then the Ahlfors tensor is represented by a 
Hermitian n × n-matrix whose rank is called the Ahlfors rank of H at p and denoted by 
RkA(H). The Ahlfors rank is invariant with respect to composition with the source and 
target automorphisms. Precisely,

RkA(H)|p = RkA(ψ ◦H ◦ γ−1)
∣∣
γ(p).

If M is the Heisenberg hypersurface and H : H3 → X is a smooth CR map, then we 
can define the Ahlfors tensor of H which has the desired invariant property by using the 
defining function 
H3 = Imw − |z|2 for the source and the defining function


̃X (z, ζ, w) = (1 − |ζ|2) Imw − |z|2 − Re(ζz̄2)
|w + 2i|2

for the target. In fact, with this choice of the defining function for X , we have from the 
explicit formulas for the local CR automorphisms in section 2.2 that


̃X ◦ ψ = |q|2
̃X

for some holomorphic (in fact, rational) function q. The corresponding Ahlfors tensor 
and its rank are invariant with respect to the action of the CR automorphisms groups 
of both source and target.

3. A partial normalization and the notion of geometric rank

Let H : H3 → X be a smooth CR map from the Heisenberg hypersurface into the 
rational model X of the tube over the future light cone. We use the automorphisms of 
the stability groups and normalize H so that its 2-jet has a specific form.

Remark 5. Throughout this and the preceding section we use the following notation: Let 
h be a germ at (0, 0) of a holomorphic function in C2, depending on variables (z, w) in 
C2. Instead of writing ∂k+�h

∂zk∂w� for k, � ∈ N, we write hz···zw···w and its evaluation at (0, 0)
we denote by h(k,	).
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Theorem 3.1. Let p ∈ H3 and H = (f, φ, g) be a germ at p of a smooth CR map sending 
H3 into X . Assume that H is CR transversal at p. Then the germ (H, p) is equivalent 
to the germ at the origin of a CR map H̃ = (f̃ , φ̃, ̃g) satisfying the following properties:

f̃(z, w) = z + i

2αzw + νw2 + O(3),

φ̃(z, w) = λw + αz2 + μzw + σw2 + O(3), (3.1)

g̃(z, w) = w + O(3),

where α ∈ R, λ, ν, μ, σ ∈ C, and O(3) denotes certain power series centered at the origin 
whose terms are of total degree greater than or equal to 3. Furthermore, we may assume 
λ ∈ {0, 1}, and if λ = μ = 0, we may assume α ∈ {−1, 0, 1}.

Proof. By the transitivity of the automorphisms of H3 and X we can assume H(0) =
0. It is easy to conclude directly from the mapping equation, that g(z, 0) = 0 and 
g(0,1) = |f (1,0)|2. By the transversality of H we have f (1,0) 	= 0 and g(0,1) > 0. We 
write Hk+1 := ϕ′

k ◦ Hk ◦ ϕ−1
k , where ϕ−1

k and ϕ′
k belong to Aut(H3, 0) and Aut(X , 0)

respectively, k ∈ N and H0 := H. The automorphism ϕ′
k has the form of (2.1) with 

suitable parameters. That is

ϕ′
k = ψa′,t′,u′,s′ ,

where ψ is given in (2.1). Similarly, we use the explicit formulas for the stability group 
Aut(H3, 0) of H3 and write

γa,t,u,s(z, w) := (su(z + aw), s2w)
1 − 2iāz + (t− i|a|2)w,

for an element in Aut(H3, 0), where a ∈ C, t ∈ R, |u| = 1 and s > 0. We set ϕk := γa,t,u,s. 
We have

H1z(0) =
(
uu′ss′f (1,0), uu′ 2s(−2ia′f (1,0) + φ(1,0)), 0

)
.

Since f (1,0) 	= 0, by choosing

u = f (1,0)

u′|f (1,0)| , s = 1
s′|f (1,0)| , a′ = − iφ(1,0)

2f (1,0) ,

we can assume that f (1,0)
1 = 1 and φ(1,0)

1 = 0. This implies g(0,1)
1 = 1. Considering 

H2 = ϕ′
1 ◦H1 ◦ ϕ−1

1 with u = 1/u′, s = 1/s′ and a′ = 0, we compute

f
(0,1)
2 = a + u′f

(0,1)
1
s′

,
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and set

a = −u′f
(0,1)
1
s′

,

to obtain f (0,1)
2 = 0. Differentiating the mapping equation for H2 twice with respect to 

w̄ gives Im g
(0,2)
2 = 0. Differentiating the mapping equation with respect to z and w̄ gives 

g
(1,1)
2 = 0 and with respect to z twice and z̄ yields f (2,0)

2 = 0. If we take H3 = ϕ′
2◦H2◦ϕ−1

2
with u = 1/u′, s = 1/s′ and a = a′ = 0, we obtain

g
(0,2)
3 = −2t + (2t′ + g

(0,2)
2 )/s′ 2,

which, after setting

t = 2t′ + g
(0,2)
2

2s′ 2 ,

implies that g(0,2)
3 = 0. If we plug H3 into the mapping equation and differentiate with 

respect to z, ̄z and w̄ we obtain that Re f (1,1)
3 = 0. Moreover, if we differentiate the 

mapping equation twice with respect to z and z̄ we get Reφ(2,0)
3 = 2 Im f

(1,1)
3 . In the last 

step, we consider H4 = ϕ′
3 ◦H3 ◦ ϕ−1

3 with u = 1/u′, s = 1/s′, a = a′ = 0 and t = t′/s′

to obtain

φ
(2,0)
4 = −2it′ + φ

(2,0)
3

s′ 2
,

which, after setting

t′ = Imφ
(2,0)
3

2 ,

implies that Imφ
(2,0)
4 = 0. Finally, we compute

φ
(0,1)
4 = u′ 2φ

(0,1)
3

s′ 2
, φ

(2,0)
4 = 4 Im f

(1,1)
3

s′ 2
,

which implies the remaining normalization conditions, when setting α = Reφ(2,0)
4 /2 and 

choosing s′ and u′ accordingly. �
In the partial normal form (3.1), the vanishing of the coefficient α is an invariant 

property of the map germ. Thus, in analogy with the case of sphere maps [20,21], we 
make the following definition.

Definition 3.2. Let H : U ⊂ H3 → X be a smooth transversal CR map and p ∈ U . We 
say that H has geometric rank zero at p if H can be brought into the partial normal 
form (3.1) with α = 0. Otherwise we say that H has geometric rank 1 at p.
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The geometric rank is precisely the Ahlfors rank defined in Section 2.3 but the latter 
can be computed easily (without the use of explicit formulas for the CR automorphisms). 
This relation was first noticed by Lamel and the second author in the case of sphere maps 
(cf. [34]). Thus the invariant property of the geometric rank also follows from that of the 
Ahlfors tensor. Indeed, if H is given as in (3.1) and if


̃X ◦H = Q̃ · 
H3 ,

then at the origin,

Q̃ = 2, Q̃z = 0, Q̃zz̄ = 2α.

Hence, for the defining functions as above and for L := ∂z−2iz̄∂w a section of T (1,0)(H3), 
we have

A(H)(L,L)
∣∣
0=

(
log Q̃

)
ZZ

(L,L)
∣∣∣∣
0
= Q̃−2Q̃zz̄

∣∣
0=

α

2 .

The relation also holds at an arbitrary point p ∈ H3 by the invariant property of the 
left-hand side.

4. Proofs of Theorem 1.2 and its corollaries

A bulk of this section is devoted to the proof of Theorem 1.2. Our strategy can be 
summarized as follows. Let Σ be the first Segre set of H3 at the origin, i.e.,

Σ = {(z, 0) ∈ C2}.

We then explicitly compute the map H along Σ, that is H(z, 0), by analyzing the mapping 
equation (4.2). From these explicit formulas for H(z, 0), we establish a holomorphic 
functional equation for the components as in Lemma 4.9. We also compute the derivatives 
Hw and Hww along Σ (see Lemma 4.4 for one instance) from which we obtain two other 
functional equations (as in Lemma 4.19) depending on several parameters. Additionally 
we need to distinguish two main cases in section 4.1 and section 4.2, leading to irrational 
and rational maps respectively. In the first case the system of these three equations 
determines the irrational map uniquely. In the second case we need to determine all sets 
of parameters (starting with Lemma 4.20) that are involved in the system so that, for 
each set, the unique solution of the system is a genuine map from H3 into X . The second 
case itself leads to several subcases, which give us all rational maps.

Lemma 4.1. Let H = (f, φ, g) be a map given in the normal form (3.1). Let P = PH be 
the rational map depending on the 2-jet of H given by
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P (z;X) = Pα,λ,σ,μ,ν(z;X) =
(
X,

2z(4ν̄z + α)X +
(
4σ̄z2 + 2iμ̄z − α

)
X2

1 − 4iλ̄z2
, 0
)
.

Then

H
∣∣
Σ= P

(
z; 2z

1 +
√

1 − 4iλ̄z2

)
. (4.1)

Thus, H is uniquely determined along Σ by its 2-jet at the origin.

Proof. Consider the following defining function of the rational model X of the tube over 
the future light cone:


̃(z, ζ, w) = − i

2(w − w)(1 − |ζ|2) − |z|2 − Re
(
z2ζ

)
.

If H sends H3 into X , then there is a function Q(z, w, ̄z, w̄) near 0 such that 
̃(H) = Q
. 
Explicitly

(g − ḡ)(1 − |φ|2) − 2i|f |2 − 2iRe
(
f2φ̄

)
= Q(z, w, z̄, w̄)(w − w̄ − 2i|z|2). (4.2)

If H is real-analytic at 0, then H extends holomorphically to a neighborhood of the 
origin and Q is real-analytic on some neighborhood of the origin. If H is smooth, then 
we can view H and Q as formal power series in z, w, ̄z, w̄. In both cases, we can treat z
and z̄ as separate variables and (4.2) holds as an identity of formal power series.

Setting z̄ = w̄ = 0 in (4.2), we have

g(z, w) = wQ(z, w, 0, 0).

We introduce the following auxiliary holomorphic functions (or formal power series)

r(z, w) = ∂Q

∂w̄
(z, w, 0, 0), s(z, w) = i

2
∂Q

∂z̄
(z, w, 0, 0). (4.3)

Differentiating the mapping equation in w̄ we obtain

−(1 − |φ|2)ḡw̄ − φφ̄w̄(g − ḡ) − 2if f̄w̄ − 2if̄ f̄w̄φ− if2φ̄w̄ = Qw̄
−Q.

Evaluating at z̄ = w̄ = 0, using H̄w̄(0, 0) = (0, ̄λ, 1), and solving for Q(z, w, 0, 0) we find 
that

g = wQ(z, w, 0, 0) = w(1 + wr + λ̄(φg + if2)). (4.4)

Similarly, differentiating (4.2) in z̄ and evaluating at z̄ = w̄ = 0,
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f = ws + zQ(z, w, 0, 0). (4.5)

Along the first Segre set Σ := {w = 0}, we have

z − f + iλ̄zf2∣∣
Σ= 0.

Solving for f
∣∣
Σ, we have that

f
∣∣
Σ= 2z

1 +
√

1 − 4iλ̄z2
= z + iλ̄z3 − 2λ̄2z5 + O

(
z6) , (4.6)

where we choose a holomorphic branch of 
√

1 − 4iλ̄z2 that is equal 1 at z = 0 so that 
the right-hand side is holomorphic at z = 0.

Applying the second-order differential operators ∂j
z̄∂

2−j
w̄ , j = 0, 1, 2, to the mapping 

equation (4.2) and evaluating at w = z̄ = w̄ = 0, we obtain 3 linear equations of 3 
unknowns r, s and φ along the first Segre set. Precisely, the following system holds along 
Σ. ⎛⎝ 0 4iz 1

−z 1 0
i 0 iλ̄

⎞⎠ ·
(
r
s
φ

)
= f

⎛⎜⎝ −αf
iα

2 − μ̄

2 f
2ν̄ − σ̄f

⎞⎟⎠ . (4.7)

This system is solvable since the coefficient 3 × 3-matrix in the left-hand side, denoted 
by D, is invertible with the inverse

D−1 = 1
1 − 4iλ̄z2

⎛⎝ −λ̄ −4iλ̄z 1
−zλ̄ −1 z

1 4iz −4iz2

⎞⎠ .

Explicitly,

φ
∣∣
Σ =

2z(α + 4ν̄z)f +
(
4σ̄z2 + 2iμ̄z − α

)
f2

1 − 4iλ̄z2

∣∣∣∣
Σ
, (4.8)

r
∣∣
Σ = 2(iν̄ − αλ̄z)f + (αλ̄ + iσ̄ − 2iλ̄μ̄z)f2

1 − 4iλ̄z2

∣∣∣∣
Σ
, (4.9)

s
∣∣
Σ = (−μ̄ + 2αλ̄z + 2iσ̄z)f2 + i(α + 4ν̄z)f

2(1 − 4iλ̄z2)

∣∣∣∣
Σ
. (4.10)

The proof is complete. �
Lemma 4.2. If H is a map given in the normal form (3.1), then the following hold

gw(z, 0) = 1 + iλ̄f(z, 0)2, (4.11)
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fw(z, 0) = λ̄zgw(z, 0)φ(z, 0) + zr(z, 0) + s(z, 0)√
1 − 4iλ̄z2

, (4.12)

gww(z, 0) = 2
(
2iλ̄f(z, 0)fw(z, 0) + λ̄gw(z, 0)φ(z, 0) + r(z, 0)

)
(4.13)

In particular, the following components of the third-order derivative of H are expressed 
in terms of its lower order derivatives

f (3,0) = 6iλ̄, f (2,1) = −μ̄ + 8iν̄, g(3,0) = 0, (4.14)

g(2,1) = 2iλ̄, g(1,2) = 4iν̄, φ(3,0) = 6(8ν̄ + 2iμ̄). (4.15)

Proof. Differentiating (4.4) in w, setting w = 0, and substituting g(z, 0) = 0, we find 
that

gw(z, 0) = Q(z, 0, 0, 0) = 1 + iλ̄f(z, 0)2.

Substituting Q(z, w, 0, 0) from (4.4) into (4.5) and applying ∂w|w=0 we obtain

fw(z, 0) = λ̄zgw(z, 0)φ(z, 0) + zr(z, 0) + s(z, 0)√
1 − 4iλ̄z2

.

Differentiating (4.4) in w twice and evaluating along w = 0, we have

gww(z, 0) = 2
(
2iλ̄f(z, 0)fw(z, 0) + λ̄gw(z, 0)φ(z, 0) + r(z, 0)

)
.

Expanding the formula for f(z, 0) in Lemma 4.1 as Taylor series at z = 0 we have 
f (3,0) = 6iλ̄. �
Lemma 4.3. Let H = (f, φ, g) be a map given in the normal form (3.1). Then the follow-
ing holds along Σ:

Δ := det

⎛⎜⎜⎜⎝
−z 0 0 2iλf + 2i(μ + 4iν)f2

i −4z 0 2λ + 2(μ + 8iν)f − φ̄(2,1)f2

0 2i −2z 4ν − 2f̄ (1,2)f − φ̄(1,2)f2 − 2(iμ̄ + 2ν̄)φ
0 0 3i iḡ(0,3) − 2f̄ (0,3)f − φ̄(0,3)f2 − 6iσ̄φ

⎞⎟⎟⎟⎠ = 0. (4.16)

Proof. Applying the third-order differential operators ∂j
z̄∂

3−j
w̄ , j = 0, 1, 2, 3, to the map-

ping equation (4.2), evaluating at w = z̄ = w̄ = 0, and using Lemma 4.2, we obtain 4 
linear equations of the following auxiliary holomorphic functions (or formal power series)

p(z, w) := Qz̄z̄(z, w, 0, 0), t(z, w) := Qz̄w̄(z, w, 0, 0), q(z, w) := Qw̄w̄(z, w, 0, 0)

along the first Segre set. For instance, for j = 0, we can set w = w̄ = 0 in the mapping 
equation and using g(z, 0) = ḡ(z̄, 0) = 0, we have
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f(z, 0)f̄(z̄, 0) + 1
2f(z, 0)2φ̄(z̄, 0) + 1

2 f̄(z̄, 0)2φ(z, 0) = z̄zQ(z, 0, z̄, 0).

Differentiating this three times in z̄ and setting z̄ = 0, we have

6iλf(z, 0) + 6(iμ− 4ν)f(z, 0)2 + 3zp(z, 0) = 0.

Proceeding similarly for j = 1, 2, 3, we have three more equations. Omitting the detailed 
calculation, we conclude that

⎛⎜⎝−z 0 0
i −4z 0
0 2i −2z
0 0 3i

⎞⎟⎠ ·
(
p
t
q

)
=

⎛⎜⎜⎜⎝
2iλf + 2i(μ + 4iν)f2

2λ + 2(μ + 8iν)f − φ̄(2,1)f2

4ν − 2f̄ (1,2)f − φ̄(1,2)f2 − 2(iμ̄ + 2ν̄)φ
iḡ(0,3) − 2f̄ (0,3)f − φ̄(0,3)f2 − 6iσ̄φ

⎞⎟⎟⎟⎠ . (4.17)

Observe that the 3 × 3-matrix formed by the last 3 rows of the coefficient matrix in the 
left-hand side of (4.17) is invertible. Thus, by the Kronecker-Capelli theorem, (4.17) has 
unique solution for p, q, and t along the first Segre set if and only if the determinant of 
the augmented matrix (4.16) vanishes identically along Σ. �

To reduce computational complexity, we shall divide into two cases, depending on 
whether λ = 0 or λ 	= 0. We first treat the case λ 	= 0.

4.1. Case 1: λ 	= 0

The purpose of this section is to compute Hw and Hww along Σ for the case λ 	= 0.

Lemma 4.4. Assume H = (f, φ, g) is given as in (3.1) and sends H3 into X . If λ 	= 0, 
then

Hw

∣∣
Σ=

(
0, 2λ

1 +
√

1 − 4iλ̄z2
,

2
1 +

√
1 − 4iλ̄z2

)
,

and

Hww

∣∣
Σ=

⎛⎜⎝ 8|λ|2z
√

1 − 4iλ̄z2(
1 − 4iλ̄z2

) (
1 +

√
1 − 4iλ̄z2

)2 , 0, 0

⎞⎟⎠ .

To prove this lemma, we first identify the coefficient μ, ν, and σ in the partial normal 
form (3.1) of the map.

Lemma 4.5. Let H be a map given in the form (3.1). Assume that (4.1) and (4.16) hold. 
If λ 	= 0, then
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μ = ν = σ = 0. (4.18)

Moreover, the following equalities between third-order derivatives at the origin hold:

φ(0,3) = 3λf (1,2), φ(1,2) = 0, φ(2,1) = 2i|λ|2, g(0,3) = 3f (1,2). (4.19)

Proof. We note that for λ 	= 0, we can write

f |Σ = zη(z), f2|Σ = i

λ̄
(1 − η(z)), for η(z) := 2

(
1 +

√
1 − 4iλ̄z2

)−1
,

where we choose the holomorphic branch of the squared root having value 1 at z = 0. 
Plugging these into the formula for φ|Σ in (4.8), we find that

φ|Σ = u(z) + v(z)η(z)

for some rational functions u(z) and v(z) holomorphic at z = 0. Expanding the deter-
minant in (4.16) along the first row, we have

Δ = −zΔ1,1 − (2iλf + 2i(μ + 4iν)f2)Δ1,4,

where Δ1,1 and Δ1,4 are the corresponding minors. Observe that Δ1,4 = −6i and, by 
the formulas for f, f2 and φ along the first Segre set above, Δ1,1 = C(z) + D(z)η(z) for 
some rational functions C(z) and D(z) holomorphic at the origin. Therefore,

Δ = −12i
λ̄

(μ + 4iν) − zC(z) +
(

12i
λ̄

(μ + 4iν) − 12λz − zD(z)
)
η(z).

Since η(z) is irrational when λ 	= 0, the vanishing of Δ is equivalent to

ν = iμ

4 , C(z) = 0, D(z) = −12λ.

The last identity is expressed explicitly as

det

⎛⎜⎝−4z 0 2λ− 2μf − φ̄(2,1)f2

2i −2z iμ− 2f̄ (1,2)f − φ̄(1,2)f2 − iμ̄φ

0 3i iḡ(0,3) − 2f̄ (0,3)f − φ̄(0,3)f2 − 6iσ̄φ

⎞⎟⎠ = −12λη(z).

Expanding the determinant along the first row, canceling the right-hand side, and divid-
ing the resulting equation by −2, we find that

2f
(
4z2f̄ (0,3) + 6izf̄ (1,2) − 3μ

)
+ f2

(
4z2φ̄(0,3) + 6izφ̄(1,2) − 3φ̄(2,1)

)
+ 6φ

(
4iσ̄z2 − μ̄z

)
− 4iz2ḡ(0,3) + 6μz + 6λ(1 − η) = 0. (4.20)
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Substituting f and φ along Σ from (4.1) and collecting the term 
√

1 − 4iλ̄z2, we can 
rewrite the equation as

A(z) + B(z)
√

1 − 4iλ̄z2(
4λ̄z2 + i

) (
1 +

√
1 − 4iλ̄z2

)2 = 0,

where A and B are polynomials in z. The vanishing of Δ implies that A and B must 
vanish identically. Explicitly,

B(z) = 4z2{8
(
2λ̄f̄ (0,3) + 3iμ̄σ̄

)
z3 + 2

(
12iλ̄f̄ (1,2) − 4iλ̄ḡ(0,3) − 12ασ̄ − 3μ̄2

)
z2

+2
(
2if̄ (0,3) − 3iαμ̄

)
z + 2ḡ(0,3) − 6f̄ (1,2)}.

Since B(z) must vanish identically, equating the coefficient of the lowest degree in z, 
that of z2, yields

ḡ(0,3) = 3f̄ (1,2).

The vanishing of the coefficient of z3 yields

f̄ (0,3) = 3αμ̄2 .

These together with the vanishing of the terms of degree 4 in z yields

4ασ̄ + μ̄2 = 0.

Combining these three equations with the vanishing of the degree 5 term yields

μ̄(αλ̄ + iσ̄) = 0.

On the other hand, we have

A(z) = 4z2{16z4
(
6σ̄2 + φ̄(0,3)λ̄− λ̄2ḡ(0,3)

)
+ 8z3

(
2λ̄f̄ (0,3) + 3iλ̄φ̄(1,2) − 3iλ̄2μ− 6iμ̄σ̄

)
+2z2

(
12iλ̄f̄ (1,2) − 6iλ̄ḡ(0,3) − 6λ̄φ̄(2,1) + 2iφ̄(0,3) − 12iλλ̄2 + 3μ̄2

)
+z

(
4if̄ (0,3) − 6φ̄(1,2) + 6λ̄μ

)
− 6f̄ (1,2) + 2ḡ(0,3) − 3iφ̄(2,1) + 6|λ|2}.

Since A must vanish identically, equating the coefficient of z2 to zero and using the 
relation ḡ(0,3) = 3f̄ (1,2) obtained above, we find that

φ̄(2,1) = −2i|λ|2.
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Putting these together we obtain

A(z) = 4z2{16z4
(
6σ̄2 + λ̄(φ̄(0,3) − 3λ̄f̄ (1,2))

)
+ 8z3

(
3iλ̄φ̄(1,2) − 3iλ̄2μ− 6iμ̄σ̄ + 3αλ̄μ̄

)
+2z2

(
2i(φ̄(0,3) − 3λ̄f̄ (1,2)) + 3μ̄2

)
+ 6z

(
iαμ̄ + λ̄μ− φ̄(1,2)

)
}.

Equating the coefficient of z3 to zero we find that

φ̄(1,2) = λ̄μ + iαμ̄.

Plugging this back to the formula for A(z), we find that the coefficient of z5 is a multiple 
of σ̄μ̄. Equating this to be zero, we find that either σ̄ = 0 of μ̄ = 0. But in either case, 
the vanishing of the coefficients of z6 and z4 in A(z) together imply that σ̄ = μ̄ = 0. 
Moreover,

φ̄(0,3) = 3λ̄f̄ (1,2).

That φ̄(1,2) = 0 is obvious since μ = 0. �
Lemma 4.6. Let H be a map given by (3.1). If λ 	= 0, then the auxiliary functions p, t, q
along the first Segre set Σ are given by

p(z, 0) = 2iλη(z), t(z, 0) = 0, q(z, 0) = f̄ (1,2)η(z).

Proof. Plugging (4.18) and (4.19) from Lemma 4.5 into the system (4.17), we have

(
i −4z 0
0 2i −2z
0 0 3i

)
·
(
p
t
q

)
=

⎛⎜⎝ 2λ + 2i|λ|2f2

−2f̄ (1,2)f

3if̄ (1,2) − 3λ̄f̄ (1,2)f2

⎞⎟⎠ = η(z)

⎛⎜⎝ 2λ
−2f̄ (1,2)z

3if̄ (1,2)

⎞⎟⎠ .

This can be solved easily to obtain the desired formulas for p, t, and q. �
Lemma 4.7. Assume that λ 	= 0. Then α = 0 and

φ(3,1) = φ(2,2) = f (0,4) = 0, g(0,4) = 4f (1,3),

g(1,3) = 3
2f

(2,2), φ(1,3) = 3
2 λ̄f

(2,2), φ(0,4) = 4λ̄f (1,3).

Proof. We introduce the following auxiliary holomorphic functions

k(z, w) = Qz̄z̄z̄(z, w, 0, 0), l(z, w) = Qz̄z̄w̄(z, w, 0, 0),

m(z, w) = Qz̄w̄w̄(z, w, 0, 0), n(z, w) = Qw̄w̄w̄(z, w, 0, 0). (4.21)
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We proceed similarly to the proof of Lemma 4.3 as follows. Applying the differential 
operator ∂j

z̄∂
4−j
w̄ , j = 0, 1, 2, 3, 4, to the mapping equation (4.2) and evaluating at w =

z̄ = w̄ = 0, we obtain an overdetermined system of 5 linear equations of 4 unknowns that 
must be satisfied by k, l, m, n restricted to the first Segre set Σ = {w = 0}. Explicitly, 
the following holds when w = 0:

⎛⎜⎜⎜⎝
−z 0 0 0
i −6z 0 0
0 2i −4z 0
0 0 3i −2z
0 0 0 4i

⎞⎟⎟⎟⎠ ·

⎛⎜⎝ k
l
m
n

⎞⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝

6iλ(2αf2 + φ)
30αλf − φ̄(3,1)f2

−2f̄ (2,2)f − φ̄(2,2)f2 − 4f̄ (1,2)φ + α2φ− 4|λ|2φ− 2iφ̄(2,1)φ− 4iαλ
−2f̄ (1,3)f − φ̄(1,3)f2 − 2f̄ (0,3)φ + iḡ(1,3) − 3iφ̄(1,2)φ

−2f̄ (0,4)f − φ̄(0,4)f2 − 4iφ
(
λ̄ḡ(0,3) + φ̄(0,3)) + iḡ(0,4)

⎞⎟⎟⎟⎟⎟⎟⎠ (4.22)

The 4 × 4-matrix formed by the last 4 rows of the coefficient matrix is invertible (its 
determinant is 24). Thus, by Kronecker-Capelli theorem again, the solvability of this 
system is equivalent to the vanishing (identically along Σ) of the determinant of the 
augmented 5 × 5-matrix which we denoted by Δ.

Since μ = ν = σ = 0, we have from (4.8)

φ
∣∣
Σ= α

2zf − f2

1 − 4iλ̄z2

∣∣∣∣
Σ
. (4.23)

Therefore, one can write

6iλ(2αf2 + φ) = −
6αλ

(
8λ̄z2 + i

)
λ̄
(
4λ̄z2 + i

) + E(z)η(z),

where E(z) is a rational function of z holomorphic at z = 0. Expanding the determinant 
Δ of the 5 × 5 augmented matrix along the first row, we have

Δ = −zΔ1,1 + (6iλ(2αf2 + φ))Δ1,5,

where Δ1,1 and Δ1,5 are the corresponding minors. Arguing as before, we have

Δ1,1 = F (z) + G(z)η(z),

where F (z) and G(z) are also rational in z and holomorphic at z = 0, while Δ1,5 = 24. 
Plugging this back into the formula for Δ, we have
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−zF (z) − 24
6αλ

(
8λ̄z2 + i

)
λ̄
(
4λ̄z2 + i

) + η(z)(24E(z) − zG(z)).

By irrationality of η(z), Δ vanishes identically iff

−zF (z) − 24
6αλ

(
8λ̄z2 + i

)
λ̄
(
4λ̄z2 + i

) = 0, 24E(z) − zG(z) = 0.

Setting z = 0 in the first equation, we find that α = 0, as desired. �
Since the corresponding solvability conditions are satisfied, we can solve for k, l, m, 

and n from

⎛⎜⎝ i −6z 0 0
0 2i −4z 0
0 0 3i −2z
0 0 0 4i

⎞⎟⎠ ·

⎛⎜⎝ k
l
m
n

⎞⎟⎠ = η(z)

⎛⎜⎜⎜⎝
0

−2f̄ (2,2)z

−2f̄ (1,3)z − 3i
2 f̄ (2,2)

4if̄ (1,3)

⎞⎟⎟⎟⎠ (4.24)

to obtain the following identity along Σ:

k(z, 0) = m(z, 0) = 0, m(z, 0) = 1
2 f̄

(2,2)η(z), n(z, 0) = f̄ (1,3)η(z). (4.25)

Proof of Lemma 4.4. Differentiating the mapping equation with respect to z̄ and w̄ and 
combining the two equations, we obtain

z + iλ̄zf(z, w)2 − f(z, w) + λ̄zg(z, w)φ(z, w) + wzr(z, w) + ws(z, w) = 0. (4.26)

Differentiating this with respect to w and setting w = 0 yields

(2iλ̄zf − 1)fw + zr + s
∣∣
Σ= 0.

Plugging α = σ = μ = ν = 0 into (4.7), we easily find that r = s = 0 along w = 0. Thus

fw
∣∣
Σ= 0.

Applying ∂j
z̄∂

2−j
w̄ ∂w, j = 0, 1, 2, to the mapping equation and evaluating along Σ, we 

obtain ⎛⎝ 0 4iz 1
−z 1 0
i 0 iλ̄

⎞⎠ ·
(
rw
sw
φw

)
= i

2

(
p
t
q

)
.

Plugging the formulas for p, t, and q along Σ from Lemma 4.6, we find that
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φw

∣∣
Σ=

η(z)
(
λ− 2iz2f̄ (1,2))
1 − 4iλ̄z2

.

We claim that

f (1,2) = 2|λ|2.

To show this, we differentiate (4.26) twice in w and setting w = 0, using φ = 0, fw = 0, 
gw = 1 + λ̄f2 along Σ to obtain

fww

∣∣
Σ= −

4z
(
2|λ|2 − f̄ (1,2)

(
1 +

√
1 − 4iλ̄z2

))
(
1 − 4iλ̄z2

) (
1 +

√
1 − 4iλ̄z2

)2 .

Differentiating this equation in z and evaluating at z = 0 we find that

f (1,2) = −2|λ|2 + 2f̄ (1,2).

Hence f (1,2) = 2|λ|2 and the claim follows. Thus

fww

∣∣
Σ= 8|λ|2z

√
1 − 4iλ̄z2(

1 − 4iλ̄z2
) (

1 +
√

1 − 4iλ̄z2
)2 .

In the next step, we solve for pw, tw and qw along the first Segre set. To this end, 
we apply ∂j

z̄∂
3−j
w̄ ∂w, j = 0, 1, 2, 3, to the mapping equation (4.2) and evaluate along 

z̄ = w̄ = w = 0 to obtain⎛⎜⎝−6z 0 0
i −4z 0
0 2i −2z
0 0 3i

⎞⎟⎠ ·
(
pw
tw
qw

)
= i

⎛⎜⎝ k
l
m
n

⎞⎟⎠
when w = 0. The solvability of this overdetermined system, via Kronecker-Capelli theo-
rem, gives

k(z, 0) − 6izl(z, 0) − 12z2m(z, 0) + 8iz3n(z, 0) = 0,

which, from the formula (4.25) for k, l, m, and l along Σ, is equivalent to

12iz
(
4zf̄ (1,3) + 3if̄ (2,2)

)
f
∣∣
Σ= 0,

or equivalently,

f̄ (1,3) = 0, f̄ (2,2) = 0.
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Hence, from (4.25), we find that k = l = m = n = 0 along Σ and consequently pw =
tw = qw = 0 along Σ.

Finally, applying ∂j
z̄∂

2−j
w̄ ∂2

w, j = 0, 1, 2, and evaluating along w = z̄ = w̄, we have

⎛⎝ 0 4iz 1
−z 1 0
i 0 iλ̄

⎞⎠ ·
(
rww

sww

φww

)
=

(0
0
0

)

and we find that

φww

∣∣
Σ= 0.

The proof is complete. �
We sum up and use the notation O(5), which denotes power series centered at the 

origin whose terms are of total degree greater than or equal to 5.

Lemma 4.8. If λ 	= 0, then

H(z, w) = (1 + iz2 + w2)(z, w,w) + O(5),

and

H(z, 0) =
(

2z
1 +

√
1 − 4iz2

, 0, 0
)
,

Hw(z, 0) =
(

0, 2
1 +

√
1 − 4iz2

,
2

1 +
√

1 − 4iz2

)
,

Hww(z, 0) =
(

8z
√

1 − 4iz2

(1 − 4iz2)(1 +
√

1 − 4iz2)2
, 0, 0

)
.

In the next step we want to determine the map along the second Segre set, 
parametrized by (z, ̄z) �→ (z, 2izz̄). To this end we evaluate the mapping equation and 
its first and second CR derivative at w̄ = 0. More precisely, denote by L the global 
(1, 0)-vector field given by

L = ∂

∂z
+ 2iz̄ ∂

∂w
,

and L its conjugate. Observe that L
 = 0 on C2 (not just along H3). We consider the 
system

Lkρ′(H(z, w̄ + 2izz̄), H(z, w))
∣∣
w̄=0= 0, k ∈ {0, 1, 2}.
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Using the fact that φ(z, 0) = g(z, 0) = fw(z, 0) = φww(z, 0) = gww(z, 0) = 0, the 
above system reduces to the following, where we skip evaluation along Σ̄ in H̄ and its 
derivatives and along the second Segre set:

2if̄f + if̄2φ− g = 0, (4.27)

izφ̄w̄f
2 − f̄z̄f − (f̄ f̄z̄ − zφ̄w̄g)φ + zḡw̄ = 0, (4.28)

2izφ̄z̄w̄f
2 + (4z2f̄w̄w̄ − f̄z̄z̄)f + ((4z2f̄w̄w̄ − f̄z̄z̄)f̄ − f̄2

z̄ + 4iz2ḡw̄φ̄w̄)φ (4.29)

+ 2zφ̄z̄w̄φg + 2zḡz̄w̄ = 0.

Combining (4.28) and (4.29) and eliminating f2 lead to an equation of the form:

A + Bf + (C + f̄B)φ = 0, (4.30)

where

A = 2z(ḡz̄w̄φ̄w̄ − ḡw̄φ̄z̄w̄),

B = φ̄w̄

(
4z2f̄w̄w̄ − f̄z̄z̄

)
+ 2f̄z̄φ̄z̄w̄,

C = −f̄2
z̄ φ̄w̄ + 4iz2ḡw̄φ̄

2
w̄.

It can be checked that A = 0 and −2iz̄(C + f̄B) = B, hence (4.30) implies φ = 2iz̄f , 
such that (4.27) shows g = φ. The remaining equation is given by

iz(1 + 4iz̄2)f2 − f + z = 0.

The solution compatible with (4.6) is

f(z, 2izz̄) =
1 −

√
1 − 4iz2(1 + 4iz̄2)
z(2i− 8z̄2) ,

setting z̄ = w/(2iz) gives

f(z, w) = z(1 −
√

1 − 4w2 − 4iz2)
2(w2 + iz2) .

If we rewrite the denominator via

2(w2 + iz2) = 1
2(1 −

√
1 − 4w2 − 4iz2)(1 +

√
1 − 4w2 − 4iz2),

we obtain

f(z, w) = 2z
1 +

√
1 − 4w2 − 4iz2

,

which gives the desired map ι in Theorem 1.2 and finishes the case λ 	= 0.
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4.2. Case 2: λ = 0

In this case, Lemma 4.1 implies that

H
∣∣
Σ=

(
z, αz2 + 2z3(4ν̄ + iμ̄) + 4σ̄z4, 0

)
.

We shall show that μ, ν, and σ must be zero.

Lemma 4.9. Assume that λ = 0, then σ = 0 and the following holomorphic identity holds:

4z3g − 4z2wf + w2zφ− w2Υ(z, w) (w(μ + 4iν) − αz) = 0, (4.31)

where Υ := gφ + if2.

Proof. Setting w = w̄ + 2izz̄ in the mapping equation (4.2), we rewrite it in the 
parametrized form:

(1 − φ(z, w̄ + 2izz̄)φ̄(z̄, w̄))(g(z, w̄ + 2izz̄) − ḡ(z̄, w̄)) − 2if(z, w̄ + 2izz̄)f̄(z̄, w̄)

−if(z, w̄ + 2izz̄)2φ̄(z̄, w̄) − if̄(z̄, w̄)2φ(z, w̄ + 2izz̄) = 0,(4.32)

which is satisfied for z, ̄z, w̄ in a neighborhood of the origin in C3 or as identity of formal 
power series.

Setting w̄ = 0 and substituting f̄(z̄, 0) = z̄, ḡ(z̄, 0) = 0, and φ̄(z̄, 0) = αz̄2 + 2z̄3(4ν −
iμ) + 4σz̄4, we have

g(z, 2i|z|2) − Υ(z, 2i|z|2)
(
αz̄2 + 2z̄3(4ν − iμ) + 4σz̄4)

−2iz̄f(z, 2i|z|2) − iz̄2φ(z, 2i|z|2) = 0.

From this, we obtain a holomorphic equation for f , g, and φ. Formally, we substitute 
z̄ = w/(2iz), to get

g(z, w) − Υ(z, w)
(
w2 (σw2 + wz(μ + 4iν) − αz2)

4z4

)

−
(w
z

)
f(z, w) +

(
w2

4z2

)
φ(z, w) = 0.

Clearing the denominator 4z4 we have

4z4g − w2Υ(z, w)
(
σw2 + wz(μ + 4iν) − αz2)− 4z3wf + w2z2φ = 0. (4.33)

This holds as an identity of germs of holomorphic functions at the origin if H is holo-
morphic. If H is only assumed to be smooth or formal CR map, then the above holds as 
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formal power series. Indeed, if G(z, w) denotes the left-hand side, then the computation 
above shows that

G(z, 2izz̄) = 0

as an identity of formal power series of z and z̄. Since the Segre map (z, ̄z) �→ (z, 2izz̄) is 
of generic full rank (in other words, H3 is minimal, cf. [3]), we can apply a well-known 
result (as stated and proved in [3, Proposition 5.3.5]) to conclude that G(z, w) must be 
zero in C[[z, w]].

Setting z = 0 in (4.33), we obtain

σw4Υ(0, w) = 0.

Thus, either σ = 0, or Υ(0, w) = 0. If the latter statement holds, we differentiate the 
identity three times in w and evaluate at the origin to get

σ = 1
2φww = 1

2(gφ + if2)www = Υwww = 0.

Hence in all cases it holds that σ = 0 and (4.33) reduces to (4.31), as desired. Setting 
z = 0 in the last equation, we see that either μ + 4iν = 0, or Υ(0, w) = 0. �
Lemma 4.10. If λ = 0, then σ = 0 and

φ(0,3) = 6(6μν − iμ2 + 8iν2), (4.34)

φ(1,2) = −4
3 if

(0,3) + 2α(iμ− 2ν), (4.35)

φ(2,1) = 4
3 ig

(0,3) − 4if (1,2), (4.36)

φ(3,0) = 12(4ν̄ + iμ̄). (4.37)

Proof. By Lemma 4.3 and the assumption λ = 0 we have

Δ := det

⎛⎜⎜⎜⎝
−z 0 0 2i(μ + 4iν)f2

i −4z 0 2(μ + 8iν)f − φ̄(2,1)f2

0 2i −2z 4ν − 2f̄ (1,2)f − φ̄(1,2)f2 − 2(iμ̄ + 2ν̄)φ
0 0 3i iḡ(0,3) − 2f̄ (0,3)f − φ̄(0,3)f2 − 6iσ̄φ

⎞⎟⎟⎟⎠ = 0, (4.38)

along Σ. On the other hand, when λ = 0 we have

H
∣∣
Σ=

(
z, αz2 + 2z3(4ν̄ + iμ̄) + 4σ̄z4, 0

)
.

If σ 	= 0, then φ
∣∣
Σ has degree exactly equal 4. Observe that f

∣∣
Σ= z and hence the last 

column in the matrix on the right of (4.38) has degree at most 4 in z. We claim that 
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Δ has degree exactly 7. In fact, expanding the determinant dropping all terms of degree 
less than 7 we find that the degree 7 term in Δ is 192iσ̄2z7. Thus, the vanishing of Δ
along Σ implies that σ = 0.

With σ = 0, substituting f(z, 0) = z and φ(z, 0) = αz2 + 2z3(4ν̄ + iμ̄) into (4.38) and 
equating coefficients of z to be zero, we can easily find the formulas as above. �
Lemma 4.11. If λ = 0, then μ = −3iν or μ = −4iν.

Proof. Applying the differential operator ∂4
z̄ to the mapping equation (4.2), evaluating 

at z̄ = w̄ = 0, and using φ(4,0) = 96σ̄ = 0, we find that k(z, w) = 0, where k is the 
auxiliary function defined in (4.21). Next, applying the differential operator ∂j

w̄∂
4−j
z̄ , 

j = 1, 2, 3, 4, to the mapping equation (4.2) and evaluating at w = z̄ = w̄ = 0, we obtain 
an overdetermined system of 4 linear equations of 3 unknowns that must be satisfied by 
l, m, n restricted to the first Segre set Σ = {w = 0}. Explicitly, the Kronecker-Capelli 
theorem implies that, when w = 0,

det

⎛⎜⎜⎜⎝
−6z 0 0 −z2φ̄(3,1) − 6μφ
2i −4z 0 (α2 − 2iφ̄(2,1) − 4f̄ (1,2))φ− 2zf̄ (2,2) − z2φ̄(2,2)

0 3i −2z (6iαν̄ − 3iφ̄(1,2) − 2f̄ (0,3))φ− 2zf̄ (1,3) + iḡ(1,3) − z2φ̄(1,3)

0 0 4i −4φ(6ν̄2 − iφ̄(0,3)) − 2zf̄ (0,4) + iḡ(0,4) − z2φ̄(0,4)

⎞⎟⎟⎟⎠= 0.

Denote this determinant by Δ. Observe that the entries in the last column of the matrix 
are polynomials in z of degree at most 3 and hence Δ have degree at most 6. Moreover, 
all the terms in the determinant expansion of Δ have degree at most 5 except the product 
of the diagonal entries. Thus, collecting the term of degree 6 in z we have

Δ = 384z6(μ̄− 4iν̄)
(
φ̄(0,3) − 6iν̄2

)
+ · · ·

where the dots represent terms of degree 5 or less in z. Thus, the vanishing of Δ implies 
that either μ = −4iν or φ̄(0,3) − 6iν̄2 = 0. In the latter case, we use Lemma 4.10 to 
conclude that μ = −3iν, as desired. �
Lemma 4.12. If λ = 0 and μ = −4iν, then μ = ν = 0.

Proof. Since μ = −4iν, we have φ(z, 0) = αz2, and φ̄(0,3) = 0, φ̄(1,2) = −4
3 if̄

(0,3) + 4αν̄, 
φ̄(2,1) = −4

3 iḡ
(0,3) + 4if̄ (1,2). Thus

det

⎛⎜⎜⎜⎝
−6z 0 0 (24iαν − φ̄(3,1))z2

2i −4z 0 (α3 − 8
3αḡ

(0,3) + 4αf̄ (1,2) − φ̄(2,2))z2 − 2zf̄ (2,2)

0 3i −2z (2αf̄ (0,3) − 6iα2ν̄ − φ̄(1,3))z2 − 2zf̄ (1,3) + iḡ(1,3)

2 ¯(0,4) 2 (̄0,4) (0,4)

⎞⎟⎟⎟⎠ = 0.
0 0 4i −(24αν̄ + φ )z − 2zf + iḡ
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Expanding the determinant on the left, we obtain a degree 5 polynomial in z. Equating 
the terms of degree 5, we obtain

φ̄(0,4) = −24αν̄2.

Similarly, equating coefficients of degree 4 terms, we have

φ̄(1,3) = 2αf̄ (0,3) + i
(
f̄ (0,4) − 6α2ν̄

)
.

Equating the terms of degree 3 yields

φ̄(2,2) = 4αf̄ (1,2) − 2
3 i

(
ḡ(0,4) − 4f̄ (1,3)

)
− 8

3αḡ
(0,3) + α3.

Equating the terms of second degree

φ̄(3,1) = 6if̄ (2,2) − 4iḡ(1,3) − 6αμ.

With these conditions satisfied, the system is solvable possessing a unique solution, which 
can be found by solving the system

(2i −4z 0
0 3i −2z
0 0 4i

)
·
(

l
m
n

)
=

⎛⎜⎝−2zf̄ (2,2) + 2
3 iz

2 (ḡ(0,4) − 4f̄ (1,3))
−iz2f̄ (0,4) − 2zf̄ (1,3) + iḡ(1,3)

−2zf̄ (0,4) + iḡ(0,4)

⎞⎟⎠ (4.39)

We observe that, when restricted to Σ, n is linear, m is at most quadratic, and l is at 
most cubic in z (actually, the unique solutions l, m, and n along Σ are linear in z).

Applying ∂w∂3
z̄ to the mapping equation and evaluating at w = z̄ = w̄ = 0, using 

k(z, 0) = 0 and μ + 4iν = 0, we find that

pw
∣∣
Σ= 0.

Next, applying ∂w∂
j
z̄∂

3−j
w̄ , j = 0, 1, 2, to the mapping equation (4.2) and evaluating at 

w = z̄ = w̄ = 0 we find that

(−4z 0
2i −2z
0 3i

)
·
(
tw
qw

)
=

⎛⎜⎝ il − 4iν̄z3φ̄(2,1) − 16|ν|2z2 − 4ανz
−4iν̄z2f̄ (1,2) − iαzf̄ (1,2) + im− 4iν̄z3φ̄(1,2) + 4ν̄φw

−5iν̄z2f̄ (0,3) − iαzf̄ (0,3) + in + 18ν̄3z3

⎞⎟⎠ .

Again, by the Kronecker-Capelli theorem, this overdetermined system is solvable iff

Δ := det

⎛⎜⎝−4z 0 il − 4iν̄z3φ̄(2,1) − 16|ν|2z2 − 4ανz
2i −2z −4iν̄z2f̄ (1,2) − iαzf̄ (1,2) + im− 4iν̄z3φ̄(1,2) + 4ν̄φw

2 (̄0,3) (̄0,3) 3 3

⎞⎟⎠ = 0.

0 3i −5iν̄z f − iαzf + in + 18ν̄ z
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On the other hand, applying ∂w∂
j
z̄∂

2−j
w̄ , j = 0, 1, 2, and evaluating at w = z̄ = w̄ = 0, 

we obtain a system of 3 linear equations for rw, sw, and φw similarly to the first case. In 
fact,

φw

∣∣
Σ= −16iν̄2z4 + · · ·

where the dots are the terms which are at most cubic in z. Plugging this into the 
determinant above and expanding it, the resulting polynomial is of degree at most 5. 
Collecting the term of degree 5 in z from the term 18ν̄3z3 of the (3, 3)-entry and the 
term 4ν̄φw in the (2, 3)-entry, we have

Δ = −96ν̄3z5 + · · ·

where the dots represent terms of degree 4 or less in z. Thus, the vanishing of Δ implies 
that ν = 0, as desired. �

Thus, from Lemmas 4.11 and 4.12 we have μ = −3iν and we use this from now on.

Lemma 4.13. If λ = 0, then μ = −3iν. Moreover,

fw
∣∣
Σ = 5

2 iν̄z
2 + iαz

2 , (4.40)

φw

∣∣
Σ = 1

3 iz
2
(
2f̄ (1,2) − 4f (1,2) + α2

)
+ 1

3 iz
3
(
18αν̄ − 4if̄ (0,3)

)
+ 6iν̄2z4 − 3iνz,

(4.41)

gw
∣∣
Σ = 1, (4.42)

and

fww

∣∣
Σ = 2ν + f (1,2)z + z2

(
4
3 if̄

(0,3) − 13αν̄
2

)
− 15ν̄2z3, (4.43)

gww

∣∣
Σ = 4iν̄z, (4.44)

gwww

∣∣
Σ = ḡ(0,3) + 2z

(
if̄ (0,3) − 3αν̄

)
− 36ν̄2z2. (4.45)

Proof. Since g(z, w) = w(wr(z, w) + 1), we have gw
∣∣
Σ= 1. From (4.7),

r(z, 0) = 2iν̄z, s(z, 0) = i

2αz + 1
2 iν̄z

2.

Therefore,

fw
∣∣ = zr + s

∣∣ = 5
iν̄z2 + iαz

,
Σ Σ 2 2
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as desired.
Next, we solve the following system for p, t and q along Σ:

(
i −4z 0
0 2i −2z
0 0 3i

)
·
(
p
t
q

)
=

⎛⎜⎜⎝
10iνz + 4

3 i(3f̄
(1,2) − ḡ(0,3))z2

4ν − 2f̄ (1,2)z − 4i
3 f̄ (0,3)z2 + 4ν̄2z3

iḡ(0,3) − 2f̄ (0,3)z − 6iν̄2z2

⎞⎟⎟⎠ .

We find that

(
p
t
q

)
= −1

6

(6i 12z −8iz2

0 3i 2z
0 0 2i

)
·

⎛⎜⎜⎝
10iνz + 4

3 i(3f̄
(1,2) − ḡ(0,3))z2

4ν − 2f̄ (1,2)z − 4i
3 f̄ (0,3)z2 + 4ν̄2z3

iḡ(0,3) − 2f̄ (0,3)z − 6iν̄2z2

⎞⎟⎟⎠

=

⎛⎜⎜⎝
2νz

1
3 iz

(
3f̄ (1,2) + ḡ(0,3))− 2iν

−2ν̄2z2 + 1
3 ḡ

(0,3) + 2
3 izf̄

(0,3)

⎞⎟⎟⎠ .

Applying the differential operators ∂j
z̄∂

2−j
w̄ ∂w, j = 0, 1, 2, to the mapping equation 

(4.2) and evaluating along Σ, we obtain

( 0 4iz 1
−z 1 0
i 0 0

)
·
(
rw
sw
φw

)
= i

2

(
p
t
q

)
+

⎛⎜⎝ −2αzfw + iαφgw
1
2 iαfw − 3iν̄zfw − 3

2 ν̄φgw
−2ν̄fw

⎞⎟⎠ .

The coefficient matrix on the left, denoted by D3, is invertible with the inverse

D−1
3 =

(0 0 −i
0 1 −iz
1 −4iz −4z2

)

Using the formula for p, t, q and fw, gw along Σ, we find that

rw
∣∣
Σ = 1

6 ḡ
(0,3) + 1

6z
(
−6αν̄ + 2if̄ (0,3)

)
− 6ν̄2z2, (4.46)

sw
∣∣
Σ = z

(
−1

2 f̄
(1,2) + 1

3 ḡ
(0,3) − α2

4

)
+ z2

(
−9αν̄

4 + 1
3 if̄

(0,3)
)

+ ν − 3
2 ν̄

2z3, (4.47)

φw

∣∣
Σ = 1

3 iz
2
(
6f̄ (1,2) − 4ḡ(0,3) + 3α2

)
+ 1

3 iz
3
(
18αν̄ − 4if̄ (0,3)

)
+ 6iν̄2z4 − 3iνz

(4.48)

From the formula for φw, we can compute

φ(2,1) = 2
i
(
6f̄ (1,2) − 4ḡ(0,3) + 3α2

)
.
3
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This and Lemma 4.10 imply the following “reflection identity”

6f (1,2) + 6f̄ (1,2) − 2g(0,3) − 4ḡ(0,3) + 3α2 = 0,

which, in turn, shows that g(0,3) is real and

g(0,3) = ḡ(0,3) = f (1,2) + f̄ (1,2) + α2

2 .

Plugging this back into the formula for φw we obtain

φw

∣∣
Σ= −3iνz + 1

3 iz
2
(
2f̄ (1,2) − 4f (1,2) + α2

)
+ 1

3 iz
3
(
18αν̄ − 4if̄ (0,3)

)
+ 6iν̄2z4.

Since f = z + w(zr + s), we have

fw(z, 0) = zrw(z, 0) + sw(z, 0).

Plugging in the formulas for rw and sw along w = 0, we obtain the desired formula for 
fw(z, 0). The formulas for gw and gww along w = 0 can be deduced similarly from the 
identity g = w(1 + wr). The proof is complete. �
Lemma 4.14. If ν = 0, then f (0,3) = 0.

Proof. Using the formula for fw, φw, and gw along Σ, we can produce another holo-
morphic equation for f, φ, and g by differentiating the mapping equation along the CR 
vector field. Indeed, we have

L
(

(H(z, w̄ + 2i|z|2), H(z̄, w̄))

)
= 0.

Substituting w̄ = 0 and using f̄(z̄, 0) = z̄, φ̄(z̄, 0) = αz̄2 + 2νz̄3, ̄g(z̄, 0) = 0, we find that

0 = 2iz + Υ(z, 2i|z|2)
(
2izφ̄w̄(z̄, 0) − φ̄z̄(z̄, 0)

)
− f(z, 2i|z|2)

(
4zf̄w̄(z̄, 0) + 2i

)
−φ(z, 2i|z|2)

(
4|z|2f̄w̄(z̄, 0) + 2izφ̄(z̄, 0) + 2iz̄

)
, (4.49)

where, as before, Υ := φg + if2. Substituting z̄ = w/(2iz), we obtain an equation of the 
form

0 = 2iz + Υ(z, w) + · · ·

Since ν = 0, we have φ̄w̄(z̄, 0) = 4
3f

(0,3)z̄3+ lower order terms. Clearing the denominator 
z2, we obtain a holomorphic functional equation for f(z, w), g(z, w), and φ(z, w). Setting 
z = 0, we obtain 0 = w3f (0,3)Υ(0, w). Thus,

f (0,3)Υ(0, w) = 0. (4.50)
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On the other hand, with ν = 0, setting w = 0 in the first holomorphic functional equation
(4.31) and solving for g(0, w), we find that

φ(0, w) = αf(0, w)2

−1 + iαg(0, w) .

Substituting φ(0, w) as above into (4.50), we find that

f (0,3)f(0, w)2 = 0.

Hence, either f (0,3) = 0 or f(0, w) = 0. But the latter also implies that f (0,3) = 0. The 
proof is complete. �
Lemma 4.15. If λ = 0, then σ = 0 and μ = −3iν. Moreover,

φ(3,1) = 12iαν̄,

φ(2,2) = 2i
3

(
g(0,4) − 4f (1,3)

)
− 5α

3 f (1,2) − 8α
3 f̄ (1,2) − 1

3α
3 − 12|ν|2,

φ(1,3) = 4iνf̄ (1,2) − 2iνf (1,2) − if (0,4) + 13
2 iα2ν,

φ(0,4) = 24αν2.

Proof. The solvability condition for the overdetermined system (4.39) for l, m, and n
reads⎛⎜⎜⎝

−6z 0 0 18iνφ− z2φ̄(3,1)

2i −4z 0 −2zf̄ (2,2) − z2φ̄(2,2) + (α2 − 4f̄ (1,2) − 2iφ̄(2,1))φ
0 3i −2z −2zf̄ (1,3) + iḡ(1,3) − z2φ̄(1,3) + (6iαν̄ − 3iφ̄(1,2) − 2f̄ (0,3))φ
0 0 4i −2zf̄ (0,4) + iḡ(0,4) − z2φ̄(0,4)

⎞⎟⎟⎠ = 0.

(4.51)

Here we used 6ν̄2+iφ̄(0,3) = 0. Recall that φ(z, 0) = 2ν̄z3+αz2 and f(z, 0) = z. Plugging 
these into the determinant and equating the coefficients of zk, k = 2, 3, 4, 5, we obtain

φ(3,1) = −2i
(
3f (2,2) − 2g(1,3) + 9αν̄

)
= 4

(
2f̄ (0,3) + 3iαν̄

)
,

φ(2,2) = αf (1,2) + 2
3 i

(
g(0,4) − 4f (1,3)

)
− 8

3αg
(0,3) + α3 − 12|ν|2,

φ(1,3) = 2αf (0,3) − i
(
6νf (1,2) + f (0,4) − 4νg(0,3)

)
− 3

2 iα
2ν,

φ(0,4) = −8iνf (0,3).

With these equations being satisfied, we can solve for l, m, and n along Σ. �
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Lemma 4.16. If λ = 0, then

ḡ(1,3) = 3
4

(
f̄ (2,2) + 5αν

)
, (4.52)

ḡ(0,4) = 1
2 i

(
4αf (1,2) + 10αf̄ (1,2) − 4if̄ (1,3) − 4αḡ(0,3) + 2α3 + 75|ν|2

)
, (4.53)

f̄ (0,4) = 1
2 ν̄

(
36f (1,2) + 18f̄ (1,2) − 16ḡ(0,3) − 3α2

)
, (4.54)

f̄ (0,3) = −3iαν̄ (4.55)

Proof. Applying the fourth-order differential operators ∂w∂j
z̄∂

3−j
w̄ , j = 0, 1, 2, 3, to the 

mapping equation (4.2) and evaluating at w = z̄ = w̄ = 0, we obtain a system of 4 
linear equations of 3 unknowns that must be satisfied by pw, tw, and qw along Σ. By the 
Kronecker-Capelli theorem again, the following determinant must vanish identically on 
the first Segre set:

Δ := det

⎛⎜⎜⎜⎝
−z 0 0 −6i|ν|2z3

i −4z 0 il − 3iν̄z3φ̄(2,1) − 25|ν|2z2 − 5ανz
0 2i −2z −5iν̄z2f̄ (1,2) − iαzf̄ (1,2) + im− 3iν̄z3φ̄(1,2) + 2ν̄φw

0 0 3i −5iν̄z2f̄ (0,3) − iαzf̄ (0,3) + in + 18ν̄3z3

⎞⎟⎟⎟⎠ = 0.

Expanding the determinant along the last column, the result is a polynomial of degree 
at most 6 in z. Collecting the terms of kind z6, we easily see that they are canceled out. 
Since n(z, 0) is linear in z, the terms of degree 5 only come from the terms of kind z2

in the (4, 4)-entry and the terms of kind z3 in the (3, 4)-entry. Explicitly, equating the 
coefficient of z5, we obtain

ν̄
(
2if̄ (0,3) − 3φ̄(1,2) + 12αν̄

)
= 0.

Using the formula for φ(1,2) in Lemma 4.10, we obtain

ν̄
(
3αν̄ − if̄ (0,3)

)
= 0.

Thus,

if̄ (0,3) = 3αν̄,

provided that ν 	= 0. On the other hand, if ν = 0, then this also holds by Lemma 4.14. 
Consequently, g(1,3) = 0, f (2,2) = −5αν̄, φ(3,1) = 12iαν̄. �

Putting these calculations above together, we obtain
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Lemma 4.17. If λ = 0, then

φw

∣∣
Σ = −3iνz + 1

3 iz
2
(
2f̄ (1,2) − 4f (1,2) + α2

)
+ 2iαν̄z3 + 6iν̄2z4, (4.56)

fww

∣∣
Σ = 2ν + f (1,2)z − 5

2αν̄z
2 − 15ν̄2z3, (4.57)

gwww

∣∣
Σ = 2 Re f (1,2) + α2

2 − 36ν̄2z2. (4.58)

When the equalities in Lemma 4.15 hold, the overdetermined system for l, m, n given 
in (4.39) can be solved uniquely. Explicitly,

l
∣∣
Σ = −1

3 iz
(
2ḡ(1,3) − 3f̄ (2,2)

)
− 6i|ν|2z2 = −5iανz − 6i|ν|2z2, (4.59)

m
∣∣
Σ = 1

6 ν̄z
2
(
8f (1,2) − 4f̄ (1,2) + α2

)
− 1

6 iz
(
ḡ(0,4) − 4f̄ (1,3)

)
+ 1

3 ḡ
(1,3)

= 1
6 ν̄z

2
(
8f (1,2) − 4f̄ (1,2) + α2

)
− 1

6 iz
(
ḡ(0,4) − 4f̄ (1,3)

)
, (4.60)

n
∣∣
Σ = −2ν̄z2f̄ (0,3) + 1

2 izf̄
(0,4) + 1

4 ḡ
(0,4)

= 6iαν̄2z2 + 1
2 izf̄

(0,4) + 1
4 ḡ

(0,4). (4.61)

Recall that k
∣∣
Σ= 0.

In the next step, we solve for pw, tw, and qw along Σ. To this end, we apply ∂j
z̄∂

3−j
w̄ ∂w, 

j = 0, 1, 2, 3, to the mapping equation (4.2), evaluating along z̄ = w̄ = w = 0, and 
plugging in the formulas above for l, m, and n, to obtain⎛⎜⎝−z 0 0

i −4z 0
0 2i −2z
0 0 3i

⎞⎟⎠ ·
(
pw
tw
qw

)

=

⎛⎜⎜⎜⎝
−6i|ν|2z3

il + 2ν̄z3(4f̄ (1,2) − 2f (1,2) − α2) − 25|ν|2z2 − 5ανz
im + 2ν̄z3(2f̄ (0,3) − 3iαν̄) − 5iν̄z2f̄ (1,2) − iαzf̄ (1,2) + 2ν̄φw

in− 5iν̄z2f̄ (0,3) − iαzf̄ (0,3) + 18ν̄3z3

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
−6i|ν|2z3

2ν̄z3(4f̄ (1,2) − 2f (1,2) − α2) − 19|ν|2z2

im + 18iαν̄2z3 − 5iν̄z2f̄ (1,2) − iαzf̄ (1,2) + 2ν̄φw

− i
4 ḡ

(0,4) −
( 1

2 f̄
(0,4) + 3α2ν̄

)
z − 21αν̄2z2 + 18ν̄3z3

⎞⎟⎟⎟⎠
when w = 0. Here we have used various formulas for the third-order derivatives of φ
at z = w = 0 obtained earlier in Lemma 4.10. The resulting overdetermined system 
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is solvable if and only if the corresponding augmented matrix is degenerate. By direct 
computation the determinant is equal to

2z4
(
2ν̄

(
10f (1,2) + f̄ (1,2)

)
− 2f̄ (0,4) − 11α2ν̄

)
+ 2z3

(
6αf̄ (1,2) + 2i

(
ḡ(0,4) − 2f̄ (1,3)

)
+ 75|ν|2

)
.

Equating the coefficients of powers of z to be zero, we have

ḡ(0,4) = 3iαf̄ (1,2) + 2f̄ (1,3) + 75i
2 |ν|2, (4.62)

f̄ (0,4) = ν̄f (1,2) + 10ν̄f̄ (1,2) − 11
2 ν̄α2. (4.63)

On the other hand, substituting g(0,3) and g(0,4) into Lemma 4.15 we find that

φ(2,2) = 1
3

(
10αf (1,2) − 8αf̄ (1,2) − 4if (1,3) − α3 + 39|ν|2

)
. (4.64)

A “reflection identity” for φ(2,2) is used in the following lemma.

Lemma 4.18. Assume that λ = 0, then

3α
(
f (1,2) + f̄ (1,2)

)
+ 2i

(
f (1,3) − f̄ (1,3)

)
+ 123|ν|2 = 0. (4.65)

Moreover

φww

∣∣
Σ=6ανz + 1

6(285|ν|2 − α3 + 16αf (1,2) − 2αf̄ (1,2) − 4if̄ (1,3))z2

− 1
3 ν̄(5α2 − 68f (1,2) + 46f̄ (1,2))z3 + 25

2 αν̄2z4 − 9ν̄3z5.

Proof. With all the identities above, we can solve for pw, tw and qw. Precisely

pw = 6i|ν|2z2,

tw = 1
2 ν̄z

2
(
2f (1,2) − 4f̄ (1,2) + α2

)
+ 13|ν|2z

4 ,

qw = −6iν̄3z3 + 7iαν̄2z2 + 1
12 iν̄z

(
20f (1,2) + 2f̄ (1,2) + α2

)
−

1
24 i

(
−6αf̄ (1,2) + 4if̄ (1,3) − 75|ν|2

)
.

Applying ∂2
w∂

j
w̄∂

2−j
z̄ , j = 0, 1, 2, we obtain a system of the form:( 0 4iz 1

−z 1 0
)

·
(
rww

sww

)
= i

(
pw
tw

)
+
(
V1
V2

)
,

i 0 0 φww qw V3
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where

V1 = −2αzfww + αzgww(4s− iαz) + 2iαφw + 25
2 αν̄2z4 + 5α2ν̄z3 + α3z2

2 ,

V2 = 1
2 iαfww − 3iν̄zfww − 3

2 ν̄gwwφ− 3ν̄φw + 75
4 iν̄3z4 + 15

2 iαν̄2z3 + 3
4 iα

2ν̄z2,

V3 = −2ν̄fww.

Solving for φww we find that

φ(2,2) = 1
3

(
16αf (1,2) − 2αf̄ (1,2) − 4if̄ (1,3) − α3 + 285|ν|2

)
.

Compare this with formula (4.64) for φ(2,2) as above, we are done. �
Lemma 4.19. If λ = 0, then ν = μ = σ = 0. The components f, φ, and g of the map 
satisfy the following three holomorphic functional equations:

−4wzf + iw2φ + 4z2g + αw2Υ = 0. (4.66)

6z(αw − 2i)f − wφ + 12iz2 +
(
6iαw − w2

(
2f (1,2) − 4f̄ (1,2) + α2

))
Υ = 0, (4.67)

A0(z, w)f(z, w) + B0(z, w)φ(z, w) + C0(z, w)Υ(z, w) = 0, (4.68)

for

A0(z, w) = 24wzf̄ (1,2) + 24iαz, (4.69)

B0(z, w) = 4iw2f̄ (1,2) − 8iw2f (1,2) − iα2w2 − 12i, (4.70)

C0(z, w) = w2
(
2αf (1,2) − 4if (1,3) − 16αf̄ (1,2) + α3

)
− 8iw

(
2f (1,2) − 16f̄ (1,2) + α2

)
− 12α. (4.71)

Proof. Using the formula for fw, φw, and gw along Σ, we can produce another holomor-
phic functional equation for f, φ, and g by differentiating the mapping equation along 
the CR vector field. Indeed, we have

L
(
L
(

(H(z, w̄ + 2i|z|2), H(z̄, w̄))

)) ∣∣∣∣
w̄=0

= 0.

Expanding the derivatives and substituting the formulas above, we have

0 = A(z, w)f(z, w) + B(z, w)φ(z, w) + C(z, w)Υ(z, w) − 192νwz4, (4.72)

where, by direct calculation,
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A(z, w) = 96wz4f̄ (1,2) + 360ν2w3z2 + 120iανw2z3

+ 480νwz3 + 384iν̄z5 + 96iαz4, (4.73)

B(z, w) = 16iw2z3f̄ (1,2) − 32iw2z3f (1,2) − 135iν2w4z + 24ανw3z2

− 4iα2w2z3 − 216iνw2z2 − 96ν̄wz4 − 48iz3, (4.74)

C(z, w) = 4w2z3
(
2αf (1,2) − 4if (1,3) − 16αf̄ (1,2) + α3 − 285|ν|2

)
− 4iw3z2

(
46νf (1,2) − 68νf̄ (1,2) + 5α2ν

)
− 16iwz3

(
4f (1,2) − 32f̄ (1,2) + 2α2

)
− 48αz3 − 144ανw2z2 + 144iνwz2

+ 75αν2w4z + 288iν2w3z + 27iν3w5 − 288iαν̄wz4 − 288ν̄z4. (4.75)

On the other hand, from (4.31), we have

g(z, w) =
w
(
4iz2f(z, w) + wf(z, w)2(αz − iνw) + wzφ(z, w)

)
w2φ(z, w)(νw + iαz) + 4iz3 .

Substituting this into Υ, we have

Υ(z, w) = −z(2zf(z, w) − iwφ(z, w))2

νw3φ(z, w) + iαw2zφ(z, w) + 4iz3 .

Plugging this into (4.72), canceling the nonzero term z/(νw3φ(z, w) + iαw2zφ(z, w) +
4iz3), and setting z = 0, we obtain

108iν3w7φ(0, w)2 = 0.

(In this step, the only term of degree 1 in z in B(z, w) and the term containing no z in 
C(z, w) are important.) Thus, either ν = 0 or φ(0, w) = 0. But in the latter case, we 
have 0 = φ(0,3) = −6iν2 and hence ν = 0, as desired.

Plugging these into (4.31) and canceling z we obtain (4.66). Similarly, we get (4.67)
from Lemma 4.14 and the third equation (4.68) from (4.72). The proof is complete. �

From now on, we use the fact that ν = μ = σ = 0. Then, collecting from above,

H(z, 0) = (z, αz2, 0),

Hw(z, 0) =
(
iαz

2 ,
1
3 iz

2
(
2f̄ (1,2) − 4f (1,2) + α2

)
, 1
)
,

Hww(z, 0) =
(
f (1,2)z,−1

6

(
α3 − 16αf (1,2) + 2αf̄ (1,2) + 4if̄ (1,3)

)
z2, 0

)
.

For each triple of parameters (α, f (1,2), f (1,3)) ∈ R × C × C satisfying (4.65) with 
ν = 0, the system of holomorphic functional equations (4.66), (4.67), and (4.68) above 
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has a unique algebraic solution, which may have a singularity at the origin. Even in the 
case the solution is holomorphic near the origin, the resulting map does not necessarily 
send H3 into X , see Example 5.3 below. In the next step, we determine all the triples 
of parameters 

(
α, f (1,2), f (1,3)) such that the solution of this system is a genuine map 

sending H3 into X . We write f (1,2) = η + iξ, with η, ξ ∈ R. From Lemma 4.18, we can 
write f (1,3) = γ+(3i/2)αη with γ ∈ R. The mapping equation (4.32) gives the following 
constrains on these parameters.

Lemma 4.20. Under the assumptions of Lemma 4.19 the following three equations hold:

α5 − 4α3η + 4α
(
90ξ2 + η2)− 72γξ = 0, (4.76)

23α4ξ − 4α3γ − 56α2ξη + 8αγη − 1116ξ3 + 20ξη2 = 0, (4.77)

7α6 − 240α4η + 2304α2 (142ξ2 + η2)− 290304αγξ + 62208γ2 − 4096
(
333ξ2η + η3) = 0.

(4.78)

The following will be useful for the proof of Lemma 4.20.

Lemma 4.21. If λ = 0, then

f(0, w) = φ(0, w) = 0, φz(0, w) = 0.

Proof. Setting z = 0 in the first holomorphic functional equation (4.66), and solving for 
φ(0, w) we have

φ(0, w) = − αf(0, w)2

1 − iαg(0, w) .

Setting z = 0 into the second holomorphic functional equation (4.67) and plugging in 
φ(0, w) from above we have

w2f(0, w)2
(
2f (1,2) − 4f̄ (1,2) + α2

)
= 0.

Assume, by contradiction, that f(0, w) 	= 0, then f (1,2) = α2/2.
Setting z = 0 in the third holomorphic functional equation (4.68) and plugging in 

φ(0, w) from above we have

−2w2f(0, w)2
(
5αf (1,2) − 2if (1,3) − 10αf̄ (1,2) + α3

)
= 0.

Solving for f (1,3) we have

f (1,3) = 3iα3
.
4
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Plugging these two values into the holomorphic functional equations, we obtain precisely 
the map which satisfies f(0, w) = 0. Thus, in any case, f(0, w) = 0 and hence φ(0, w) = 0. 
The proof is complete. �

For the proof of Lemma 4.20 we associate weight 1 to z and weight 2 to w and consider 
a weighted homogeneous expansion of H, i.e.,

f(z, w) = z +
∑
i�2

fi(z, w), φ(z, w) =
∑
j�2

φj(z, w), g(z, w) = w +
∑
k�3

gk(z, w),

where hm(z, w) is a weighted homogeneous polynomial of order m � 2. Collecting 
weighted homogeneous terms of weight k + 1 for k � 3 in the mapping equation gives:

Re
(
igk+1(z, w) + 2z̄fk(z, w) + z̄2φk−1(z, w)

)
+ · · · = 0,

for (z, w) ∈ H3. The dots · · · denote terms, which involve parts of the weighted homo-
geneous expansion of the map of lower order, which appear for k � 5.

The lower weight components are computed above as follows:

H1 = (z, 0, 0) H5 =
( 1

2f
(1,2)zw2, 0, 0

)
H2 =

(
0, αz2, w

)
H6 =

(
0, 1

4φ
(2,2)z2w2, 1

6g
(0,3)w3)

H3 =
(
iα
2 zw, 0, 0

)
H7 =

( 1
6f

(1,3)zw3, 0, 0
)
,

H4 =
(
0, 1

2φ
(2,1)z2w, 0

)
where φ(2,1) = 2i

3
(
2f̄ (1,2) − 4f (1,2) + α2), φ(2,2) = 1

3
(
16αf (1,2)−2αf̄ (1,2)−4if̄ (1,3)−α3), 

and g(0,3) = α2/2 + 2 Re f (1,2).

Lemma 4.22. For every j � 2, g2j+1 = f2j = φ2j−1 = 0 and g2j = g2j,jw
j with g2j,j

being real.

Proof. Observe that the conclusion holds for j = 0, 1, 2, 3. We argue by induction as fol-
lows. Setting z = 0 in the mapping equation of weight 2j+1, noticing that g2j+1(0, w̄) = 0
(as w̄ has weight 2), and using Lemma 4.21 above (f(0, w) = φ(0, w) = 0), we immedi-
ately conclude that g2j+1 must vanish. Plugging this back into the mapping equation of 
weight 2j + 1, the remaining terms are divisible by z. Moreover, f2j is divisible by z2

while f2j−2 = 0 by the induction assumption. Dividing the equation by z and setting 
z = 0, we obtain f2j = 0. Plugging these two into the mapping equation and arguing 
similarly, we find that φ2j−1 = 0. �

In particular,

g8 = 1
g(0,4)w4 = 1 (

2f (1,3) − 3iαf (1,2)
)
w4.
24 24
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In the sequel we use the following notation: Expanding terms hk of weighted order k in 
z and w we name the coefficients according to the powers of w and write:

hk(z, w) = hk,0z
k + hk,1z

k−2w + · · · + hk,�k/2�z
k−2�k/2�w�k/2�.

Comparing the terms of weight 10 in the mapping equation, we have

0 =ig10,5
(
w5 − w̄5) + 2

4∑
j=0

f2j+1f9−2j + 2 Im
3∑

l=1

φ2l

4−l∑
j=1

φ̄10−2l−2jg2j

+ Re
4∑

l=1

φ̄2l

4−l∑
j=0

f2j+1f9−2l−2j

∣∣∣∣
w=w̄+2izz̄

.

Observe that in each monomial appearing in the right-hand side, the highest degree in 
w̄ is 4. Collecting the terms zz̄w̄4 appearing in g10, f1f̄9, f̄1f9, and f5f̄5, we have

2 Re f9,4 − 5g10,5 + α Im f7,3 + |f5,2|2 = 0.

Collecting the terms of kind zz̄3w̄3 appearing only in f1f̄9 we find that f9,3 = 0. Thus, 
f9 is monomial, that is f9 = f9,4zw

4. Collecting terms of kind z2z̄2w̄3 we have

48f9,4 − 120g10,5 − 3iReφ8,3 − 10α2 Im f5,2

+ 24|f5,2|2 − 16i Im f2
5,2 − 6iα(3f7,3 − f̄7,3) = 0.

The coefficient of z5z̄5 gives:

4f9,4 − iφ8,3 − 4g10,5 − 2iα2 Re f5,2 = 0.

The coefficient of z4z̄4w̄ gives:

576f9,4 − 108iφ8,3 − 720g10,5 − α4 − 128|f5,2|2 − 72iαf7,3

− 104α2f5,2 + 100α2f̄5,2 + 32f2
5,2 + 128f̄2

5,2 = 0.

And finally, the coefficient of z3z̄3w̄2 gives:

864f9,4 − 108iφ8,3 − 1440g10,5 − α4 − 16|f5,2|2 − 216iαf7,3

− 92α2f5,2 + 88α2f̄5,2 − 64f2
5,2 + 224f̄2

5,2 = 0.

Solving for (f9,4, φ8,3, g10,5) and using (4.18) in the above system of five equations we 
obtain:
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f9,4 = 1
144

(
5α4 + 928|f5,2|2 + 72iαf7,3 + 4α2f5,2 + 16α2f̄5,2 − 352f2

5,2 − 448f̄2
5,2

)
,

φ8,3 = − i

12
(
α4 + 176|f5,2|2 + 24iαf7,3 − 12α2f5,2 + 16α2f̄5, 2 − 64f2

5,2 − 96f̄2
5,2

)
,

g10,5 = 1
72

(
α4 + 200|f5,2|2 + 4α2 Re f5,2 − 160 Re f2

5,2
)
.

Considering terms of weight 12 in the mapping equation, we obtain from z8z̄4 that 
f11,3 = 0, from z2z̄4w̄3 that φ10,3 = 0 and from z5z̄3w̄2 that f11,4 = 0, which shows that 
f11 = f11,5z

2w5 and φ10 = φ10,4z
2w4 are monomials.

Furthermore, the coefficients of z, ̄z and w̄ allow to solve for the triple (f11,5, φ10,4,

g12,6) and provide an additional equation for (α, f5,2, f7,3). More precisely, the coefficient 
of zz̄w5 gives

24 Re f11,5 − 72g12,6 − α3 Im f5,2 + 6α2 Re f7,3 + 8α Im f2
5,2 + 24 Re(f7,3f̄5,2) = 0.

The coefficient of z5z̄5w̄ gives

160if11,5 − 192ig12,6 + 32φ10,4 + α5 + 20α3f5,2 − 24α3f̄5,2 − 32αf2
5,2

+ 64α|f5,2|2 − 8iα2f7,3 = 0.

The coefficient of z3z̄3w̄3 gives

720if11,5 + 72φ10,4 − 1440ig12,6 + 8α5 + 1312α|f5,2|2 + 43α3f5,2 − 29α3f̄5,2 − 496αf2
5,2

− 568αf̄2
5,2 + 264if̄5,2f7,3 + 24if5,2f̄7,3 + 192 Im(f5,2f7,3) + 66iα2f7,3 + 6iα2f̄7,3 = 0.

The coefficient of z6z̄6 gives

288if11,5 + 72φ10,4 − 288ig12,6 + α5 − 160α|f5,2|2 + 50α3f5,2 − 64α3f̄5,2 + 40αf2
5,2

+ 160αf̄2
5,2 − 36iα2f7,3 = 0.

Solving the above system for (f11,5, f̄11,5, φ10,4, g12,6) we obtain

f11,5 = i

48(α5 + 320α|f5,2|2 − 11α3f5,2 + 15α3f̄5,2 − 120αf2
5,2 − 184αf̄2

5,2 + 14iα2f7,3

− 2iα2f̄7,3 − 8if5,2f̄7,3 − 88if̄5,2f7,3 − 64 Im(f5,2f7,3)),

f̄11,5 = − i

96(α5 − 64α|f5,2|2 + 28α3f5,2 − 24α3f̄5,2 + 128αf̄2
5,2 − 8iα2f7,3 − 16iα2f̄7,3

− 64if5,2f̄7,3 + 256if̄5,2f7,3 + 256 Im(f5,2f7,3)),

φ10,4 = 1
48(3α5 + 1152α|f5,2|2 − 62α3f5,2 + 86α3f̄5,2 − 416αf2

5,2 − 688αf̄2
5,2 + 76iα2f7,3

− 4iα2f̄7,3 − 16if5,2f̄7,3 − 176if̄5,2f7,3 − 128 Im(f5,2f7,3)),
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g12,6 = i

576(α5 + 704α|f5,2|2 − 46α3f5,2 + 50α3f̄5,2 − 272αf2
5,2 − 464αf̄2

5,2

− 24α2 Im f7,3 − 48if5,2f̄7,3 − 528if̄5,2f7,3 − 384 Im(f5,2f7,3)).

The remaining equation (or equivalently the difference of the conjugate of the formula 
of f11,5 and f̄11,5 above) using (4.18) is given by (4.76).

Considering terms of weight 14, we obtain from z9z̄3w̄ that f13,3 = 0 and z2z̄6w̄3

gives φ12,3 = 0. The coefficient of z9z̄5 implies f13,4 = 0, the coefficient of z3z̄w̄5 shows 
f13,5 = 0 and the coefficient of z5z̄3w̄3 implies φ12,4 = 0. Hence, f13 = f13,6z

2w6 and 
φ12 = φ12,5z

4w5 are monomials.
Furthermore, the coefficient of zz̄w̄6 gives

1152 Re f13,6 − 4032g14,7 + 9α6 + 1760α2|f5,2|2 + 76α4 Re f5,2 − 1312α2 Re f2
5,2

− 3584 Re f3
5,2 + 4608|f5,2|2 Re f̄5,2 + 576|f7,3|2 − 120α3 Im f7,3 + 384α Im(f5,2f7,3)

+ 1056α Im(f5,2f̄7,3) = 0,

the coefficient of z7z̄7 gives

576f13,6 − 144iφ12,5 − 576g14,7 + α6 − 1072α2|f5,2|2 + 92α4f5,2 − 136α4f̄5,2 + 352α2f2
5,2

+ 736α2f̄2
5,2 − 72iα3f7,3 = 0,

the coefficient of z3z̄3w̄4 gives

4320f13,6 − 360iφ12,5 − 10080g14,7 + 31α6 + 7312α2|f5,2|2 − 154α4f5,2 + 246α4f̄5,2

− 2576α2f2
5,2 − 4056α2f̄2

5,2 + 768f3
5,2 − 5792f̄3

5,2 + 15296f5,2f̄
2
5,2 − 8384f2

5,2f̄5,2

+ 252iα3f7,3 − 72iα3f̄7,3 + 864|f7,3|2 − 720iαf5,2f̄7,3 − 2160iαf̄5,2f7,3

− 1728α Im(f5,2f7,3) = 0,

and the coefficient of z4z̄4w̄3 gives

1440f13,6 − 180iφ12,5 − 2520g14,7 + 8α6 + 1236α2|f5,2|2 + 11α4f5,2 − 20α4f̄5,2

− 470α2f2
5,2 − 646α2f̄2

5,2 + 400f3
5,2 − 672f̄3

5,2 + 2416f5,2f̄
2
5,2 − 1840f2

5,2f̄5,2

+ 24iα3f7,3 − 18iα3f̄7,3 + 72|f7,3|2 − 624iαf̄5,2f7,3 − 144iαf5,2f̄7,3 + 204iαf5,2f7,3

− 180iαf̄5,2f̄7,3 = 0.

We then solve the above system of four equations for the quadruple (f13,6, f̄13,6, φ12,5,

g14,7) to obtain

f13,6 = 1 (−39α6 + 4α4(288f5,2 − 335f̄5,2) − 16α2(1483|f5,2|2 − 570f2
5,2 − 1013f̄2

5,2)
5760
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+ 64(|f5,2|2(70f5,2 + 578f̄5,2) − 180f3
5,2 − 401f̄3

5,2) − 144iα3(8f7,3 − f̄7,3)

+ 5184|f7,3|2 − 288iα(f5,2(4f7,3 + f̄7,3) − 29f̄5,2f7,3)),

f̄13,6 = 1
5760(−9α6 + α4(568f̄5,2 − 636f5,2) − 16α2(163|f5,2|2 − 162f2

5,2 − 41f̄2
5,2)

− 64(|f5,2|2(878f5,2 − 1526f̄5,2) − 96f3
5,2 + 677f̄3

5,2) − 24iα3(5f7,3 − 19f̄7,3)

+ 5184|f7,3|2 + 192iα(f5,2(23f7,3 + 8f̄7,3) − f̄5,2(22f7,3 + 31f̄7,3))),

φ12,5 = i

1440(35α6 − 4α4(486f5,2 − 661f̄5,2) + 16α2(2075|f5,2|2 − 744f2
5,2 − 1381f̄2

5,2)

− 64(|f5,2|2(134f5,2 + 226f̄5,2) − 128f3
5,2 − 207f̄3

5,2) + 48iα3(37f7,3 − 3f̄7,3)

− 2880|f7,3|2 + 96iα(f5,2(14f7,3 − 3f̄7,3) − f̄5,2(73f7,3 + 6f̄7,3))),

g14,7 = 1
2880(3α6 + 4α4(16f5,2 − 7f̄5,2) − 16α2(39f |5,2|2 − 23f2

5,2 − 46f̄2
5,2)

− 64(|f5,2|2(32f5,2 − 176f̄5,2) + 26f3
5,2 + 97f̄3

5,2) − 48iα3f7,3 + 1152|f7,3|2

+ 96iα(f5,2(f7,3 − 3f̄7,3) + f̄5,2(7f7,3 − 3f̄7,3))).

Using the above expressions and (4.18), the remaining equations reduce to (4.77) and 
(4.78). This finishes the proof of Lemma 4.20.

Lemma 4.23. The solutions of (4.76)–(4.78) are given as follows: If α 	= 0, then the only 
solution is ξ = γ = 0 and η = α2/2. If α = 0, then a solution satisfies ξ = 0 and 
6γ2 − η3 = 0.

Proof. If α = 0, then (4.76) shows that γξ = 0. When γ = 0, we have η = ξ = 0. If 
ξ = 0, then (4.77) reduces to 6γ2 − η3 = 0.

Consider the case α 	= 0. Assume ξ 	= 0, then (4.76) shows

γ = 1
72ξ α(1 + 360ξ2 − 4η(1 − η)).

The remaining two equations then become

18ξ2(3 − 4η(4 − 5η)) − (1 − 2η)3 − 20088ξ4 = 0, (4.79)

(1 − 2η)4 − 36ξ2(1 − 2η)2(1 + 6η) + 2592(53 − 111η)ξ4 = 0. (4.80)

Note that η = 53/111 does not lead to a solution. So we can assume η 	= 53/111. 
Combining (4.79) and (4.80), to eliminate ξ4, we obtain

(1 − 2η)((1 − 2η)2(181 − 382η) − 36ξ2(287 − 2η(925 − 1296η))) = 0. (4.81)

Observe that η = 1/2 leads to ξ = 0, which is not allowed. Also, if the coefficient of ξ2

is zero, this gives a contradiction to the fact that ξ ∈ R. Solving (4.81) for ξ2 gives
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ξ2 = (1 − 2η)2(182 − 382η)
36(287 − 2η(925 − 1296η)) . (4.82)

Substituting this into the equations (4.79) and (4.80) implies that η ∈ {53/111, 1/2}, 
which we already excluded, or η = 51/22. Assuming the latter leads to a negative 
expression in the right-hand side of (4.82). Thus the case ξ 	= 0 does not lead to any 
solution. Assuming ξ = 0 directly leads to γ = 0 and η = α2/2, which completes the 
proof. �

When α 	= 0, the 4-jet of the map at 0 is completely fixed, while for α = 0 there is 
still one parameter to be determined. In the latter case we need to consider weight 16 in 
the weighted homogeneous expansion of the mapping equation.

Assuming α = 0, we obtain from the coefficient of z12z̄4 that f15,3 = 0, from z7z̄w̄4

that f15,4 = 0, from z11z̄5 that φ14,3 = 0, from z5z̄w̄5 that f15,5 = 0, from z9z̄5w̄ that 
φ14,4 = 0, from z3z̄w̄6 that f15,6 = 0, and from z7z̄5w̄2 that φ14,5 = 0. This shows that 
f15 = f15,7z

2w7 and φ14 = φ14,6z
4w6 are both monomials.

Furthermore, the coefficient of zz̄w̄7 gives

36 Re f15,7 − 144g16,8 − 8f2
5,2(10f7,3 + 7f̄7,3) − 11f̄2

5,2(f7,3 + 4f̄7,3)

+ |f5,2|2(152f7,3 + 143f̄7,3) = 0,

the coefficient of z7z̄7w̄ gives

14f15,7 − 3iφ14,6 − 16g16,8 = 0,

the coefficient of z5z̄5w̄3 gives

630f15,7 − 90iφ14,6 − 1008g16,8 + 32f2
5,2(f7,3 − f̄7,3) + f̄2

5,2(209f7,3 + 100f̄7,3)

+ |f5,2|2(23f̄7,3 − 164f7,3) = 0,

and the coefficient of z8z̄8 gives

4if15,7 + φ14,6 − 4ig16,8 = 0.

Solving the above system for (f15,7, f̄15,7, φ14,6, g16,8), we obtain

f15,7 = 1
54

(
32f2

5,2(f7,3 − f̄7,3) + f̄2
5,2(209f7,3 + 100f̄7,3) + |f5,2|2(23f̄7,3 − 164f7,3)

)
,

f̄15,7 = 2
9
(
f2
5,2(28f7,3 + 6f̄7,3) + f̄2

5,2(55f7,3 + 36f̄7,3) − |f5,2|2(79f7,3 + 30f̄7,3)
)
,

φ14,6 = − i

27
(
32f2

5,2(f7,3 − f̄7,3) + f̄2
5,2(209f7,3 + 100f̄7,3) + |f5,2|2(23f̄7,3 − 164f7,3)

)
,

g16,8 = 1 (
32f2

5,2(f7,3 − f̄7,3) + f̄2
5,2(209f7,3 + 100f̄7,3) + |f5,2|2(23f̄7,3 − 164f7,3)

)
.
108
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When using ξ = 0, the remaining coefficients reduce to the condition γη2 = 0, which, 
together with Lemma 4.23, implies that f (1,2) = f (1,3) = 0. This fixes the 4-jet of the 
map at 0 in the case α = 0.

Note that we have the following expressions:

H(z, 0) = (z, αz2, 0), Hw(z, 0) =
(
iα

2 z, 0, 1
)
, Hww(z, 0) =

(
α2

2 z,
α3

2 z2, 0
)
.

Using the information about the 4-jet of H in Lemma 4.19 we obtain the following 
holomorphic functional equations for H:

4iz(wf − zg) + αw2f2 + w2(1 − iαg)φ = 0

2iz2 − (2i− αw)zf − αwf2 − w(1 − iαg)φ = 0

4iαz2f − z(2i− αw)(αf2 + (1 − iαg)φ) = 0.

Solving this system of equations we get the family of maps, when writing α = 2β,

rβ(z, w) = 1
1 − β2w2

(
z(1 + iβw), 2βz2, w

)
.

By the partial normal form in Theorem 3.1 we can assume β ∈ {−1, 0, 1}. Taking β ∈
{−1, 1} gives r1 and r−1 in Theorem 1.2 and r0 corresponds to �. We finish Case 2 when 
λ = 0. Together with Case 1 treated in the previous section, this completes the proof of 
part (a) of Theorem 1.2, giving a complete classification of CR transversal maps from 
H3 into X .

The pairwise inequivalences of these 4 maps are clear from their partial normal forms.

4.3. Nowhere CR transversal maps

In this section we discuss nowhere CR transversal maps. This proves part (b) of 
Theorem 1.2. Indeed, if a CR map is CR transversal at one point, it is CR transversal at 
any point in its domain, as can be checked for the maps listed in part (a) of Theorem 1.2, 
see also Remark 2.

Lemma 4.24. Any smooth CR map H from H3 into X , which is not CR transversal at 
any point of H3 is equivalent to a map (z, w) �→ (0, φ(z, w), 0) for a CR function φ
satisfying φ(0, 0) = 0.

Note that in [47, Example 2.5], Xiao–Yuan also gave examples of nowhere CR transver-
sal maps from the sphere into the boundary of the classical domain of type IV.

Proof. By homogeneity we can assume that H sends 0 to 0. If H is nowhere CR transver-
sal in H3 it satisfies the equation:
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(g(z, w) − ḡ(z̄, w̄))(1 − |φ(z, w)|2) − 2i|f(z, w)|2 − 2iRe
(
f(z, w)2φ̄(z̄, w̄)

)
= 0, (4.83)

for all (z, w, ̄z, w̄) in a neighborhood of 0. Setting z̄ = w̄ = 0 shows g = 0. Note that 
φ = 0 implies f = 0. Assume that φ 	= 0. We write f =

∑
	�	0

f	 and φ =
∑

k�k0
φk, 

where fr and φr are weighted homogeneous polynomials of order r w.r.t. the weight 
(1, 2) for (z, w) and �0, k0 � 0. Collecting terms of weight m in (4.83) we obtain:

2
m∑
i=0

fif̄m−i +
m∑
j=0

j∑
k=0

f̄m−j f̄j−kφk +
m∑
l=0

l∑
n=0

fm−lfl−nφ̄n = 0, (4.84)

where we skip the arguments. We assume φk0 	= 0 and φk = 0 for k < k0. Considering 
m = k0, shows 

∑k0
i=0 fif̄k0−i = 0, which implies fr = 0 for r � k0. Considering m =

2k0 + 2 shows fk0+1 = 0. Inductively, assuming fk0+s = 0 for s < r and considering 
m = 2(k0 + r) for r � 2, we obtain that fk0+r = 0. This shows f = 0 and completes the 
proof. �
4.4. Proof of Corollary 1.3

We can transform the maps given in Theorem 1.2, part (a), into proper holomorphic 
maps from B2 into DIV

3 using the birational transformation Φ defined in (2.5). First, let 
γ0 be the automorphism of the ball given by

γ0(z, w) =
(

2
√

2z
3 − w

,
3w − 1
3 − w

)
and C be the Cayley transform

C(z, w) =
(

z

1 + w
, i

(
1 − w

1 + w

))
which sends S3 \ {(0, −1)} onto the Heisenberg hypersurface H3. Then we obtain the 
map R0 as in (i) via

R0 = Φ ◦ � ◦ C ◦ γ0.

Moreover,


DIV
3

◦R0 = 
S3 ,

which means that R0 has vanishing Ahlfors tensor: A(R0) = 0.
The family Rβ obtained by composing Φ with rβ and the Cayley transform, i.e.,

Rβ = Φ ◦ rβ ◦ C ◦ γ0
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gives a 1-parameter smooth deformation of R0 by proper holomorphic maps. This family 
has the same properties as the family rβ does, that all Rβ’s with β > 0 are mutually 
equivalent, and a similar statement holds for the case β < 0, yet R0 is not equivalent 
to Rβ for β 	= 0. This shows that, in contrast to the higher dimensional, but small 
codimensional case, treated in [47], R0 is not rigid. Observe that Rβ is rational of degree 
two with a rather simple formula. For each β 	= 0, Rβ is equivalent to a polynomial 
(quadratic) map.

Clearly, the map P1(z, w) = (zw, (z2 − w2)/2, i(z2 + w2)/2) is a proper polynomial 
map sending B2 into DIV

3 . On the boundary, P1 sends S3 into the smooth boundary part 
R transversally. Since


DIV
3

◦ P1 = (1 + |z|2 + |w|2) 
S3 ,

we obtain, with Z1 = w̄∂z − z̄∂w ∈ Γ(T (1,0)S3), that the Ahlfors invariant of P1 is

A(P1)(Z1, Z1) = 1
2 .

Similarly, the map P−1(z, w) = (z, w2/2, iw2/2) satisfies


DIV
3

◦ P−1 = (1 − |z|2 + |w|2) 
S3

while

ρ̃DIV
3

◦ P−1

∣∣∣∣
S3

= −1 + |z|2 + |w|4
2 � 0,

with the equality appearing if and only if w = 0. Thus, P−1 sends the circle {(eit, 0)} ⊂ S3

into the singular locus of ∂DIV
3 and sends S3 \ {(eit, 0)} into the smooth boundary part 

R ⊂ ∂DIV
3 transversally. The Ahlfors invariant of P−1 is defined on S3 \ {(eit, 0)}:

A(P−1)(Z1, Z1) = − 1
2|w|2 , w 	= 0.

Thus, these three maps R0, P1, and P−1 are mutually inequivalent. Moreover, Rα ∼ P1
for α > 0 and similarly Rα ∼ P−1 for α < 0 (in contrast, the trace of the Ahlfors tensor 
of CR maps into the sphere is always nonnegative [34]).

The map I satisfies


DIV
3

◦ I = 
S3

and thus has vanishing Ahlfors tensor. Consequently, I is of geometric rank zero at all 
points. Clearly, any smooth deformation of I along the sphere must be equivalent to I.

None of the rational maps R0, P1, and P−1 can be equivalent to the irrational map I, 
since all the automorphisms of the source and target are rational. Hence, these four maps 
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are pairwise inequivalent. This can also be verified by analyzing elementary geometric 
properties of the maps as already explained in Remark 2.

Finally, assume H : B2 → DIV
3 is a proper holomorphic map that extends smoothly 

to a boundary point p ∈ S3. We can assume that p = (0, 1) and H(p) =
(
0, 1

2 ,
i
2
)
. Then 

H̃ := Φ−1 ◦H ◦C−1 defines a germ at the origin of CR maps sending H3 into X . Thus, it 
must belong to one of the five equivalence classes of the germs represented by r0, r1, r−1, 
ι, and t for some nowhere CR transversal map t as given in Lemma 4.24. But if H̃ is 
equivalent to t, then H cannot be proper as can be easily checked. Hence, H̃ must be in 
one of the equivalence classes represented by the germs of CR transversal maps, which 
are the four equivalence classes of the germs of Φ−1 ◦F ◦ C−1 with F ∈ {R0, P1, P−1, I}. 
In fact, the four germs of CR maps Φ−1 ◦ F ◦ C−1, F ∈ {R0, P1, P−1, I} are pairwise 
inequivalent as can be easily checked using the Ahlfors invariant and the irrationality. 
Thus, there are local CR automorphisms ψ ∈ Aut(X , 0) and γ ∈ Aut(H3, 0) such that 
ψ ◦ H̃ ◦ γ−1 = Φ−1 ◦ F ◦ C−1 near the origin for some F ∈ {R0, P1, P−1, I}. Thus, if 
ψ̃ := Φ ◦ψ◦Φ−1 and γ̃ := C−1◦γ◦C, then, as germs at p, ψ̃◦H◦γ̃−1 = F ∈ {R0, P1, P−1, I}. 
But ψ̃ is a global automorphism of DIV

3 by Theorem 2.3 and γ̃ is a global automorphism 
of the unit ball. This completes the proof of Corollary 1.3.

Remark 6. Although P1 and P−1 have quite simple formulas, to the best of the authors’ 
knowledge, they didn’t appear before in the literature. Take the family of rational maps 
rβ : H3 → X as above and transform it into a family of rational maps Φ ◦ rβ ◦ C to get 
various representatives of the equivalence classes of P±1. For certain values of β, the 
formulas simplify. For example, if β = −1/4, then the map Φ ◦ rβ ◦ C sends B2 into 
DIV

3 ∩ {z3 − iz2 = 0}. This suggests that we substitute z3 = iz2 into 
DIV
3

to obtain


DIV
3

(z1, z2, iz2) = 1 − 2|z1|2 − 4|z2|2 + |z1|4 = (1 − |z1|2)2 − 4|z2|2.

From this, we can easily find the desired map P−1. The formula for P1 can be constructed 
easily by analyzing the map Φ ◦ rβ ◦ C with β = 1/4.

5. Examples

Observe that X ∩ {ζ = 0} is CR equivalent to the Heisenberg hypersurface v = |z|2. 
In fact, X ∩ {ζ = 0} is the image of H3 under the linear map �(z, w) in part (i) of 
Theorem 1.2. The formula for the stability group of Aut(X , 0) suggests we consider the 
variety V = {wζ + iz2 = 0} ⊂ C3 which has a singularity at the origin. On V , we have 
Re(z2ζ̄) = −|ζ|2v and thus on X ∩ V ,

v = |z|2 − v|ζ|2
1 − |ζ|2 ,

implying v = |z|2. The real subvariety V ∩ X contains a complex variety (0, ζ, 0), and 
a graph over the Heisenberg hypersurface v = |z|2 given by (z, −iz2/w, w), w 	= 0. All 
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germs of nontransversal CR maps at the origin send an open set in H3 into this complex 
variety, see Lemma 4.24. From Lemma 2.2, we find that V ∩ X is “invariant” in the 
following sense: For (z̃, ζ̃, w̃) in the stability group of the form (2.1), we have

w̃ζ̃ + iz̃2 = −λ2u2(wζ + iz2)/δ.

That is γ(X ∩ V ) ⊂ X ∩ V for all γ ∈ Aut(X , 0). From the observation above, we can 
construct examples of maps from H3 into X as follows.

Example 5.1. Each map in the family of rational maps Ht(z, w) = (z, −iz2/(w+t), w+t), 
t ∈ R, sends H3\{(0, −t)} into X ∩V transversally, but does not extend holomorphically 
to the point (0, −t). It turns out that at any point p ∈ H3 \ {(0, −t)}, Ht represents a 
germ at p that is equivalent to the germ of � at the origin. In fact,


̃X ◦Ht = |w + t + 2i|−2
H3 ,

and hence outside the pole of Ht, the Ahlfors tensor A(Ht) vanishes identically. Thus, 
Ht must be equivalent to either � or ι. But the latter possibility is ruled out by the 
rationality and Ht is equivalent to �. Transferring this map into a map from the unit 
ball into the type IV model, we obtain a map that is equivalent to R0. Explicitly, with 
t = 0, we have

Φ ◦H0 ◦ C ◦ γ1 = −R0,

for

γ1(z, w) =
(
− 2

√
2z

w + 3 ,−
3w + 1
w + 3

)
is an automorphism of B2 exchanging the origin and (0, −1/3).

Example 5.2. As an application of the transitive part of the automorphisms in section 2.2, 
we explicitly verify that the rational map R : B2 → DIV

3 from [47, Theorem 1.4], given 
by

R(z1, z2) =
(
z1,

z2
1/2 − z2

2 + z2√
2(1 − z2)

,
i(z2

1/2 + z2
2 − z2)√

2(1 − z2)

)
,

corresponds to the linear map � : H3 → X , �(z, w) = (z, 0, w) from Theorem 1.2. Note 
that R sends p = (0, 1/2) ∈ B2 to q = (0, 1/2

√
2, −i/2

√
2) ∈ DIV

3 . We define Ψ1 :
C3 \ {z2 − iz3 =

√
2} → C3, given by

Ψ1(z1, z2, z3) =
(

−2z1√
2 − z2 + iz3

,
2z2 + 2iz3 −

√
2(z2

1 + z2
2 + z2

3)
2(
√

2 − z2 + iz3)
,
2(
√

2i + iz2 + z3)√
2 − z2 + iz3

)
,
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which locally sends R into X and q to (0, 1/2, 2i) ∈ X , and Ψ2 : C2 \ {w = −i} → C2, 
given by

Ψ2(z, w) =
(
i− w

i + w
,

2iz
i + w

)
,

which sends H3 into S3 and (1/2, i) to p. We consider

R̂(z, w) =Ψ1 ◦R ◦ Ψ2

=
(

2
√

2(1 − 2z − 2izw + w2)
−1 + 4z + (6i− 4iz + w)w,

1 − 4z + 2iw(1 + 2z) + 8z2 − w2

−1 + 4z + (6i− 4iz + w)w ,

2i + 4i(i− w)2

−1 + 4z + (6i− 4iz + w)w

)
,

which locally maps H3 to X and p̂ = (0, 1) to q̂ = 1
3 (−2

√
2i, 1, 2i). Next, we compose R̂

with automorphisms to ensure that it sends 0 to 0. More precisely, we define

ϕ(z, w) = (z, w + 1),

which is an automorphism of H3, and

ϕ′
1(z, ζ, w) =

(
2
√

2z
3 − ζ

,
3ζ − 1
3 − ζ

, w − iz2

3 − ζ

)
,

ϕ′
2(z, ζ, w) = (z + i(1 + ζ), ζ, 2z + w + i(1 + ζ)) ,

which originate from choosing λ′ = 1/2 in (2.4) and b = i and r = 0 in (2.3) respectively. 
If we set

Ř(z, w) = ϕ′
2 ◦ ϕ′

1 ◦ R̂ ◦ ϕ

=
(

2(2i(z − (1 − i))z − 2izw + w2)
−2((i− 1) + z)2 + ((2 + 4i) − 4iz)w + w2 ,

2z(3z − (2 − 2i)) − w(2 − 4iz) − w2

−2((i− 1) + z)2 + ((2 + 4i) − 4iz)w + w2 ,

(4 + 4i)w((1 + i) − 2iz + w)
−2((i− 1) + z)2 + ((2 + 4i) − 4iz)w + w2

)
,

we obtain a map, which, again, locally sends H3 into X and 0 to 0. For the final step, 
we define the following automorphisms of H3 and X respectively, fixing 0,

φ(z, w) =
(

2z + w
,

(i− 1)w
)
,
(2 + 2i)(i + z) + w (2 + 2i)(i + z) + w
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φ′(z, ζ, w) =
(
−2i + 8 + 4iz

i(z − 2i)2 + (ζ − 1)w,
(4 + iz)z − 4iζ + (ζ − 1)w

i(z − 2i)2 + (ζ − 1)w ,

−4iw
i(z − 2i)2 + (ζ − 1)w

)
,

which are obtained by following the procedure in the proof of Theorem 3.1. It can be 
verified that the map L = φ′ ◦ Ř ◦ φ agrees with �.

Remark 7. Carrying out the analogous steps as in Example 5.2 it can be shown that the 
irrational map I : B2 → DIV

3 given by I(z, w) =
(
z, w, 1 −

√
1 − z2 − w2

) /√
2 found 

by Xiao–Yuan in [47, Theorem 1.4] corresponds to the irrational map ι obtained in 
Theorem 1.2. More precisely, it is possible to obtain a map Ǐ from I, which sends (H3, 0)
to (X , 0). After that, bringing Ǐ to the partial normal form given in Theorem 3.1, it 
can be verified that the 4-jets at the origin of this map and ι agree. Since the formulas 
involved are more complicated than in the rational case we refrain from displaying them 
here.

Example 5.3. The mapping equation (4.2) can be regarded as a system of infinitely many 
linear and nonlinear equations for the Taylor coefficients of the components of the map 
under consideration. Each solution to this system gives rise to a holomorphic or formal 
CR map sending the germ (H3, 0) into (X , 0) as a subset or formally. We give an example 
of a holomorphic map whose Taylor coefficients solve all but three equations of weight 
14 as well as three holomorphic functional equations in Lemma 4.19, yet the map does 
not send H3 into X . Indeed, consider the following family of holomorphic maps

H := (f, φ, g) =
(
z + 2tzw3,−4itz2w2, w + tw4) , t ∈ R,

which satisfies the functional equations in Lemma 4.19. If Σ1 : (z, ̄z, w̄) �→ (z, w̄ + 2izz̄)
is a parametrization of the (complexification) of the Heisenberg hypersurface, then


̃ ◦Ht ◦ Σ1 = −4t2w̄3zz̄(w̄ + 2izz̄)3.

Hence, Ht sends H3 into X if and only if t = 0.

Notes added after acceptance of article

Since the first revision of this paper was submitted, the authors were able to construct 
a new family of CR maps from the Heisenberg hypersurface H5 ⊂ C3 into the real 
hypersurface Xm ⊂ Cm, m � 4, where Xm is defined for each m = 3, 4, . . . as follows.

Xm :=
{

(Z, ζ, w) ∈ Cm−2 ×C ×C : (1 − |ζ|2) Imw − ZZ
t − Re

(
ζ̄ZZt

)
= 0, |ζ| < 1

}
.
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The new family is very similar to the family rβ constructed in Section 4.2 for the case 
m = 3. Precisely, the maps

r̃β(z1, z2, w) := 1
1 − β2w2

(
z1(1 + iβw), z2(1 − iβw), 2β(z2

1 − z2
2), w

)
, β ∈ R,

send the germ (H5, 0) into the germ (X4, 0). By computing the Ahlfors invariant of r̃β, 
we can easily see that r̃β is not equivalent to r̃0 for β 	= 0.

As in the proof of Corollary 1.3, from r̃β we obtain proper holomorphic maps R̃β : B3 ⊂
C3 → DIV

4 ⊂ C4 such that R̃0 is the rational isometry with respect to the canonical 
Bergman metrics while R̃β is not equivalent to R̃0 if β 	= 0. Explicitly, the map

P (z1, z2, w) =
(
z1, z2w,

z2
2 − w2

2 ,
i(z2

2 + w2)
2

)
,

which is similar to P1 and sends B3 into DIV
4 , is not equivalent to the rational isometry.

The map P is a counterexample to Conjecture 2.9 of Xiao–Yuan [47] for the case of 
maps from B3 into DIV

4 . Thus, the classification of proper holomorphic maps from B3

into DIV
4 seems to be even more subtle than that in higher dimensional case. We hope 

to return to this in the future.
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